Определение производной функции в точке

Понятие производной

 

Пусть функция f(x) определена на некотором промежутке X. Придадим значению аргумента в точке x0Х произволь­ное приращение Δx так, чтобы точка x0 + Δx также принад­лежала X. Тогда соответствующее приращение функции f(x) составит Δу = f(x0 + Δx) — f(x0).

Определение 1.Производной функции f(x) в точке x0 назы­вается предел отношения приращения функции в этой точке к приращению аргумента при Δx 0 (если этот предел сущест­вует).

Для обозначения производной функции употребимы симво­лы у’ (x0) или f‘(x0):

 

 

Если в некоторой точке x0 предел (4.1) бесконечен:

 

 

то говорят, что в точке x0 функция f(x) имеет бесконечную производную.

Если функция f(x) имеет производную в каждой точке мно­жества X, то производная f'(x)также является функцией от аргумента х, определенной на X.

 

Геометрический смысл производной

 

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Определение 2.Касательной к графику функции у = f(x) в точке М называется предельное положение секущей MN, ког­да точка N стремится к точке М по кривой f(x).

Пусть точка М на кривой f(x) соответствует значению ар­гумента x0, а точка N — значению аргумента x0 + Δx (рис. 4.1). Из определения касательной следует, что для ее существования в точке x0 необходимо, чтобы существовал предел , который равен углу наклона касательной к оси Оx. Из треугольника MNA следует, что

 

 

 

Если производная функции f(x) в точке x0 существует, то, согласно (4.1), получаем

 

 

Отсюда следует наглядный вывод о том, что производная f‘(x0) равна угловому коэффициенту (тангенсу угла наклона к положительному направлению оси Ох) касательной кграфику функции у = f(x) в точке М(x0, f(x0)). При этомуголнаклона касательной определяется из формулы (4.2):

 

 

Физический смысл производной

 

Предположим, что функция l = f(t) описывает закон дви­жения материальной точки по прямой как зависимость пути l от времени t. Тогда разность Δl = f(t + Δt) — f(t) — это путь, пройденный за интервал времени Δt, а отношение Δlt — средняя скорость за время Δt. Тогда предел определяет мгновенную скорость точки в момент вре­мени t как производную пути по времени.

В определенном смысле производную функции у = f(x) можно также трактовать как скорость изменения функции: чем больше величина f‘(x), тем больше угол наклона касательной к кривой, тем круче график f(x) и быстрее растет функция.

 

Правая и левая производные

 

По аналогии с понятиями односторонних пределов функ­ции вводятся понятия правой и левой производных функции в точке.

Определение 3.Правой (левой) производной функции у = f(x) в точке x0 называется правый (левый) предел отноше­ния (4.1) при Δx 0, если этот предел существует.

Для обозначения односторонних производных используется следующая символика:

 

 

Если функция f(x) имеет в точке x0 производную, то она имеет левую и правую производные в этой точке, которые сов­падают.

Приведем пример функции, у которой существуют одно­сторонние производные в точке, не равные друг другу. Это f(x) = |x|. Действительно, в точке х = 0 имеем f’+(0) = 1, f’(0) = -1 (рис. 4.2) и f’+(0) ≠ f’(0), т.е. функция не имеет производной при х = 0.

 

 

Операцию нахождения производной функции называют ее дифференцированием; функция, имеющая производную в точ­ке, называется дифференцируемой.

Связь между дифференцируемостью и непрерывностью функции в точке устанавливает следующая теорема.

 

ТЕОРЕМА 1. Если функция дифференцируема в точке x0, то она и непрерывна в этой точке.

 

Обратное утверждение неверно: функция f(x), непрерыв­ная в точке, может не иметь производную в этой точке. Таким примером является функция у = |x|; она непрерывна в точке x = 0, но не имеет производной в этой точке.

Таким образом, требование дифференцируемости функции является более сильным, чем требование непрерывности, по­скольку из первого автоматически вытекает второе.

 

Уравнение касательной к графику функции в данной точке

 

Как было указано в разделе 3.9, уравнение прямой, про­ходящей через точку М(x0, у0) с угловым коэффициентом k имеет вид

 

 

Пусть задана функция у = f(x). Тогда посколькуее произ­водная в некоторой точке М(x0, у0) является угловым коэффи­циентом касательной к графику этой функции в точке М, то отсюда следует, что уравнение касательной к графику функ­ции f(x) в этой точке имеет вид

 

⇐ Предыдущая19202122232425262728Следующая ⇒


Дата добавления: 2014-10-15; Просмотров: 1422; Нарушение авторских прав?;




Формулы для первой производной

y есть функция y = y(x)
C = постоянная, производная (y’) постоянной есть 0

y = C => y’ = 0

пример: y = 5, y’ = 0

Если y есть функцией типа y = xn, формула для производной есть:

y = xn => y’ = nxn-1

пример: y = x3 y’ = 3x3-1 = 3x2
y = x-3 y’ = -3x-4

Из вышеприведенной формулы мы можем сказать, что для производной y’ функции y = x = x1 that:

если y = x тогда y’=1

y = f1(x) + f2(x) + f3(x) …=>
y’ = f’1(x) + f’2(x) + f’3(x) …

Эта формула представляет производную функции, являющейся суммой функций.
Пример: Если мы имеем две функции f(x) = x2 + x + 1 и g(x) = x5 + 7 и y = f(x) + g(x) тогда y’ = f'(x) + g'(x) => y’ = (x2 + x + 1)’ + (x5 + 7)’ = 2x1 + 1 + 0 + 5x4 + 0 = 5x4 + 2x + 1

Если функция есть произведением двух функций, формула производной выглядит так:

y = f(x).g(x) => y’ = f'(x)g(x) + f(x)g'(x)

Если f(x) = C(C есть постоянной) и y = f(x)g(x)
y = Cg(x) y’=C’.g(x) + C.g'(x) = 0 + C.g'(x) = C.g'(x)

y = Cf(x) => y’ = C.f'(x)

Формулы вычисления производной

y =    y’ =
f'(x)g(x) — f(x)g'(x)
g2(x)

y = ln x => y’ = 1/x

y = ex => y’ = ex

y = sin x => y’ = cos x

y = cos x => y’ = -sin x

y = tg x => y’ = 1/cos2x

y = ctg x => y’ = —1/sin2x

y = arcsin x  =>  y’ =
y = arccos x  =>  y’ =
y = arctg x  =>  y’ =
y = arcctg x  =>  y’ =

если функция есть функцией функции: u = u(x)

y = f(u) => y’ = f'(u).u’

Пример.

Пусть у нас есть функция y = sin(x2)
в этом случае u = x2, f(u) = sin(u), производные есть f'(u) = cos(u), u’ = 2x
y’ = (sin(u))’.u’ = cos(x2).2x = 2.x.cos(x2)

Задачи с производными

1) f(x) = 10x + 4y. Найдите первую производную f'(x)
ОТВЕТ: Мы можем использовать формулу нахождения производной для суммы функций f(x) = f1(x) + f2(x), f1(x) = 10x, f2(x) = 4y для функции f2(x) = 4y, y есть постоянной, потому что аргумент f2(x) есть x. Поэтому f’2(x) = (4y)’ = 0. Отсюда производная функции f(x) есть: f'(x) = 10 + 0 = 10.


     2) Вычислите производную f(x) =

ОТВЕТ: у нас есть две функции h(x) = x10 и g(x) = 4.15 + cos x
функция f(x) есть h(x), разделенная на g(x).

Дифференциальное исчисление функций

h'(x) = 10x9 g'(x) = 0 — sin x = -sin x

f'(x) =
h'(x).g(x) — h(x).g'(x)
(g(x))2
f'(x) =
10x9(4.15 + cos x) — x10(-sin x)
(4.15 + cosx)2
=
x10sin x + 10(60 + cos x)x9
(60 + cosx)2

3) f(x) = ln(sinx). Какая производная функции f(x)?
ОТВЕТ: Чтобы решить эту задачу, мы можем использовать последнюю формулу. Как мы видим, f(x) есть функцией двух функций: f(x) = h(g(x)), где h = ln и g = sin x

f'(x) = g'(x) = cos x =

Подробнее о производных на страницах математического форума

Форум о производных

Что такое производная

Понятие производной

Производная — главнейшее понятие математического анализа. Она характеризует изменение функции аргумента x в некоторой точке. При этом и сама производная является функцией от аргумента x

Производной функциив точке называется предел (если он существует и конечен) отношения приращения функции к приращению аргумента при условии, что последнее стремится к нулю.

То есть,

         (1)

Наиболее употребительны следующие обозначения производной:

Пример 1. Пользуясь определением производной, найти производную функции

.

Решение. Из определения производной вытекает следующая схема её вычисления.

Дадим аргументу приращение (дельта) и найдём приращение функции:

.

Найдём отношение приращения функции к приращению аргумента:

Вычислим предел этого отношения при условии, что приращение аргумента стремится к нулю, то есть требуемую в условии задачи производную:

Физический смысл производной

К понятию производной привело изучение Галилео Галилеем закона свободного падения тел, а в более широком смысле — задачи о мгновенной скорости неравномерного прямолинейного движения точки.

Однако движение свободно падающего тела явно неравномерное. Скорость v падения постоянно возрастает. И средней скорости уже недостаточно для характеристики быстроты движения на различных участках пути. Такая характеристика тем точнее, чем меньше промежуток времени .

Производная функции

Поэтому вводится следующее понятие: мгновенной скоростью прямолинейного движения (или скоростью в данный момент времени t) называется предел средней скорости при :

(при условии, что этот предел существует и конечен).

Так выясняется, что мгновенная скорость есть предел отношения приращения функции s(t) к приращению аргумента t при Это и есть производная, которая в общем виде записывается так:.

.

Решение обозначенной задачи представляет собой физический смысл производной. Итак, производной функции y=f(x) в точке x называется предел (если он существует и конечен) приращения функции к приращению аргумента при условии, что последнее стремится к нулю.

Пример 2. Найти производную функции

Решение. Из определения производной вытекает следующая схема для её вычисления.

Шаг 1. Дадим аргументу приращение и найдём

Шаг 2. Найдём приращение функции:

Шаг 3. Найдём отношение приращения функции к приращению аргумента:

Шаг 4. Вычислим предел этого отношения при , то есть производную:

Нет времени вникать в решение? Можно заказать работу!

Геометрический смысл производной

Если существует

то прямую с угловым коэффициентом

проходящую через точку , называют предельным положением секущей МР при (или при ).

Касательной к графику функции в точке М называется предельное положение секущей МР при , или, что то же при .

Из определения следует, что для существования касательной достаточно, чтобы существовал предел

,

причём предел равен углу наклона касательной к оси .

Теперь дадим точное определение касательной.

Касательной к графику функции в точке называется прямая, проходящая через точку и имеющая угловой коэффициент , т.е. прямая, уравнение которой

Из этого определения следует, что производная функцииравна угловому коэффициенту касательной к графику этой функции в точке с абсциссой x. В этом состоит геометрический смысл производной:

где — угол наклона касательной к оси абсцисс, т.е. угловой коэффициент касательной.

Пример 3. Найти производную функции и значение этой производной при .

Решение. Воспользуемся схемой, приведённой в примере 1.

Шаг 1.

Шаг 2.

Шаг 3.

Шаг 4.

Выражение под знаком предела не определено при (неопределённость вида 0/0), поэтому преобразуем его, избавившись от иррациональности в числителе и затем сократив дробь:

Найдём значение производной при :

К началу страницы

Пройти тест по теме Производная, дифференциал и их применение

Весь блок «Производная»

Автор: Сергей Смирнов
Дата:    20.11.2014

 

Что такое производная?

Таблица производных.

 

Производная — одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

— понимать суть несложных заданий с производной;

— успешно решать эти самые несложные задания;

— подготовиться к более серьёзным урокам по производной.

 

Сначала — приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов — чтобы понять задание, и всего несколько правил — чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

 

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование — это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование — действие над функцией.

Производная — результат этого действия.

Так же, как, например, сумма — результат сложения. Или частное — результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т.п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: y’ или f'(x) или S'(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли…)

Штрих также может обозначать производную конкретной функции, например: (2х+3)’, (x3)’, (sinx)’ и т.д.

Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

 

Предположим, что понимать задания мы научились. Осталось всего ничего — научиться их решать.) Напомню ещё раз: нахождение производной — это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

2. Правила дифференцирования.

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

 

Таблица производных.

В мире — бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе — линейная, квадратичная, гипербола и т.п.

Дифференцирование функций "с нуля", т.е. исходя из определения производной и теории пределов — штука достаточно трудоёмкая. А математики — тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева — элементарная функция, справа — её производная.

 

 

Рекомендую обратить внимание на третью группу функций в этой таблице производных. Производная степенной функции — одна из самых употребительных формул, если только не самая употребительная! Намёк понятен?) Да, таблицу производных желательно знать наизусть. Кстати, это не так трудно, как может показаться. Попробуйте решать побольше примеров, таблица сама и запомнится!)

Найти табличное значение производной, как вы понимаете, задание не самое трудное. Поэтому очень часто в подобных заданиях встречаются дополнительные фишки. Либо в формулировке задания, либо в исходной функции, которой в таблице — вроде и нету…

Рассмотрим несколько примеров:

1. Найти производную функции y = x3

Такой функции в таблице нет. Но есть производная степенной функции в общем виде (третья группа). В нашем случае n=3. Вот и подставляем тройку вместо n и аккуратно записываем результат:

(x3)‘ = 3·x3-1 = 3x2

Вот и все дела.

Ответ: y’ = 3x2

 

2. Найти значение производной функции y = sinx в точке х = 0.

Это задание означает, что надо сначала найти производную от синуса, а затем подставить значение х = 0 в эту самую производную. Именно в таком порядке! А то, бывает, сразу подставляют ноль в исходную функцию… Нас же просят найти не значение исходной функции, а значение её производной. Производная, напомню — это уже новая функция.

По табличке находим синус и соответствующую производную:

y’ = (sin x)’ = cosx

Подставляем ноль в производную:

y'(0) = cos 0 = 1

Это и будет ответ.

 

3. Продифференцировать функцию:

Что, внушает? ) Такой функции в таблице производных и близко нет.

Напомню, что продифференцировать функцию — это просто найти производную этой функции. Если забыть элементарную тригонометрию, искать производную нашей функции достаточно хлопотно.

Производная, основные определения и понятия.

Таблица не помогает…

Но если увидеть, что наша функция — это косинус двойного угла, то всё сразу налаживается!

Да-да! Запомните, что преобразование исходной функции до дифференцирования вполне допускается! И, случается, здорово облегчает жизнь. По формуле косинуса двойного угла:

Т.е. наша хитрая функция есть не что иное, как y = cosx. А это — табличная функция. Сразу получаем:

Ответ: y’ = — sin x.

 

Пример для продвинутых выпускников и студентов:

4. Найти производную функции:

Такой функции в таблице производных нет, разумеется. Но если вспомнить элементарную математику, действия со степенями… То вполне можно упростить эту функцию. Вот так:

А икс в степени одна десятая — это уже табличная функция! Третья группа, n=1/10. Прямо по формуле и записываем:

Вот и всё. Это будет ответ.

 

Надеюсь, что с первым китом дифференцирования — таблицей производных — всё ясно. Осталось разобраться с двумя оставшимися китами. В следующем уроке освоим правила дифференцирования.

 

Следующая страница: Как найти производную? Правила дифференцирования.  >>>>

 

Тема. Производная. Геометрический и механический смысл производной

  1. Производная.Рассмотрим некоторую функцию  в двух точках   и . Здесь через х обозначено некоторое малое изменение аргумента, называемое приращением аргумента; соответственно разность между двумя значениями функции:  называется приращением функции. Производной функции  в точке  называется предел, к которому стремится отношение приращение функции к приращению аргумента, когда приращение аргумента стремится к нулю (формула 1).

 Если этот предел существует, то функция  называется дифференцируемой в точке . Производная функции  обозначается (формула 2).

 

  1. Геометрический смысл производной. Рассмотрим график функции . Из рис.1 видно, что для любых двух точек A и B графика функции можно записать формула 3). В ней   — угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то  неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения  равен угловому коэффициенту касательной в точке A. Отсюда следует вывод.

Производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

  1. Уравнение касательной. Выведем уравнение касательной к графику функции в точке . В общем случае уравнение прямой с угловым коэффициентом имеет вид: . Чтобы найти b, воспользуемся тем, что касательная проходит через точку A: . Отсюда следует: . Подставляя это выражение вместо b, получаем уравнение касательной (формула 4).

  1. Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси. При этом задан закон движения точки: координата x движущейся точки – это известная функция времени . В течение интервала времени от до точка перемещается на расстояние: . Её средняя скорость () находится по формуле: . При  значение средней скорости стремится к определённой величине, которая в физике называется мгновенной скоростью  материальной точки в момент времени .

    Понятие производной

    Следовательно, для мгновенной скорости можно записать формулу 5. Если сравнить эту формулу с формулой производной 1, то можно сделать вывод, что

 Скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: 

Производная, нахождение производной

Производная, основные определения и понятия.


В этой статье дадим основные понятия, на которых будет базироваться вся дальнейшая теория по теме производная функции одной переменной.

Путь x – аргумент функции f(x) и — малое число, отличное от нуля.

(читается «дельта икс») называют приращением аргумента функции. На рисунке красной линией показано изменение аргумента от значения x до значения (отсюда видна суть названия «приращение» аргумента).


При переходе от значения аргумента к значения функции изменяются соответственно от до при условии монотонности функции на отрезке . Разность называют приращением функции f(x), соответствующем данному приращению аргумента. На рисунке приращение функции показано синей линией.

Рассмотрим эти понятия на конкретном примере.

Возьмем, к примеру, функцию . Зафиксируем точку и приращение аргумента . В этом случае приращение функции при переходе от к будет равно

Отрицательное приращение говорит об убывании функции на отрезке .

Графическая иллюстрация

Определение производной функции в точке.

Пусть функция f(x) определена на промежутке (a; b), и — точки этого промежутка. Производной функции f(x) в точке называется предел отношения приращения функции к приращению аргумента при . Обозначается .

Когда последний предел принимает конкретное конечное значение, то говорят о существовании конечной производной в точке. Если предел бесконечен, то говорят, что производная бесконечна в данной точке. Если же предел не существует, то и производная функции в этой точке не существует.

Функцию f(x) называют дифференцируемой в точке, когда она имеет в ней конечную производную.

Если функция f(x) дифференцируема в каждой точке некоторого промежутка (a; b), то функцию называют дифференцируемой на этом промежутке. Таким образом, любой точке x из промежутка (a; b) можно поставить в соответствие значение производной функции в этой точке , то есть, мы имеем возможность определить новую функцию , которую называют производной функции f(x) на интервале (a; b).

Операция нахождения производной называется дифференцированием.


Проведем разграничения в природе понятий производной функции в точке и на промежутке: производная функции в точке – это есть число, а производная функции на промежутке – это есть функция.

Давайте разберем это на примерах для ясности картины. При дифференцировании будем пользоваться определением производной, то есть переходить к нахождению пределов. При возникновении трудностей рекомендуем обращаться к разделу теории пределы, основные определения, примеры нахождения, задачи и подробные решения.

Найти производную функции в точке , используя определение.

Так как мы ищем производную функции в точке, то в ответе должно быть число. Запишем предел отношения приращения функции к приращению аргумента и воспользуемся формулами тригонометрии:

Осталось применить первый замечательный предел для получения конечного результата:

Найдите производную функции на промежутке , пользуясь определением.

Так как мы ищем производную функции на интервале, то в ответе должна получиться функция. Возьмем , где x – любое число из промежутка . По определению, производная есть предел отношения приращения функции к приращению аргумента, при приращении аргумента, стремящемся к нулю:

Таким образом, пришли к неопределенности. Для нахождения подобных пределов используют домножение на сопряженное выражение с последующим применением формул сокращенного умножения, приведением подобных слагаемых и сокращением:

при .

Давайте еще остановимся на одном очень важном моменте: область определения функции f(x) далеко не всегда совпадает с областью определения производной. Заметьте, в предыдущем примере областью определения исходной функции является промежуток , а производная определена на интервале . Что мы хотим этим сказать.

Производная функции.

Да то, что при дифференцировании в идеале ответ звучит так: функция является производной функции f(x) на промежутке

На основании определения производной получены многие формулы таблицы производных основных элементарных функций, которые очень ускоряют дифференцирование. Понятие производной также используется при доказательстве правил дифференцирования.

Некогда разбираться?

Закажите решение

Профиль автора статьи в Google+

К началу страницы

Добавить комментарий