Гематоэнцефалический барьер его строение и значение

.

Гематоэнцефалический барьер: строение, гистология

Гематоэнцефалический барьер представляет собой функциональный барьер, который препятствует проникновению из крови в нервную ткань ряда таких веществ, как антибиотики, токсические химические и бактериальные соединения.

Вопрос51. Гематоэнцефалический барьер и его функции

В основе функционирования гематоэнцефалического барьера лежит сниженная проницаемость, которая характерна для кровеносных капилляров в нервной ткани. Главным структурным компонентом этого барьера являются замыкающие соединения, которые обеспечивают непрерывность эндотелиальных клеток этих капилляров.

Цитоплазма их эндотелиальных клеток не содержит фенестр, которые обнаруживаются во многих других участках, а пиноцитозные пузырьки очень немногочисленны. Низкую проницаемость этих капилляров частично обусловливают окружающие их расширенные участки отростков нейроглиальных клеток.

Сосудистое сплетение состоит из складок мягкой мозговой оболочки с высоким содержанием расширенных фенестрированных капилляров, которые проникают в глубь желудочков головного мозга. Оно обнаруживается в крыше III и IV желудочков и в части стенок боковых желудочков. Сосудистое сплетение образовано рыхлой соединительной тканью мягкой мозговой оболочки, покрытой однослойным кубическим или низким столбчатым эпителием, клетки которого транспортируют ионы.

Главной функцией сосудистого сплетения является выработка спинномозговой жидкости, которая содержит лишь небольшое количество твердых веществ и целиком заполняет желудочки, центральный канал спинного мозга, субарахноидальное пространство и периваскулярное пространство. Спинномозговая жидкость важна для метаболизма центральной нервной системы и действует как механизм, защищающий ее от механических ударов.

Спинномозговая жидкость — прозрачная, с низкой плотностью (1,004—1,008 г/мл) и очень низкой концентрацией белка. В одном миллилитре этой жидкости обнаруживаются также единичные десквамированные клетки и от двух до пяти лимфоцитов. Спинномозговая жидкость непрерывно вырабатывается и циркулирует в желудочках, из которых она направляется в субарахноидальное пространство.


Сосудистое сплетение.
Основу сосудистого сплетения образует рыхлая соединительная ткань с большим количеством кровеносных капилляров (КК), она покрыта однослойным кубическим эпителием

В нем в ворсинках паутинной оболочки происходит основное всасывание спинномозговой жидкости в венозный кровоток. (В нервной ткани головного мозга лимфатические сосуды отсутствуют.)

Снижение всасывания спинномозговой жидкости или блокада ее оттока от желудочков приводят к состоянию, которое известно как гидроцефалия (греч. hydro — вода + kephale — голова). Гидроцефалией называют любое нарушение, при котором в полостях центральной нервной системы имеется избыточное количество спинномозговой жидкости, что вызывает повышение внутричерепного давления.

Врожденная гидроцефалия приводит к увеличению головы, сопровождающемуся нарушением умственной деятельности и мышечной слабостью. У взрослых имеются многочисленные неврологические симптомы, также вызванные повреждением нервной ткани головного мозга.

— Вернуться в раздел «Гистология»

Оглавление темы «Гистология нервной ткани»:

  1. Тело нервной клетки — нейрона: строение, гистология
  2. Дендриты нервных клеток: строение, гистология
  3. Аксоны нервных клеток: строение, гистология
  4. Мембранные потенциалы нервных клеток. Физиология
  5. Синапс: строение, функции
  6. Глиальные клетки: олигодендроциты, шванновские клетки, астроциты, клетки эпендимы
  7. Микроглия: строение, гистология
  8. Центральная нервная система (ЦНС): строение, гистология
  9. Гистология мозговых оболочек. Строение
  10. Гематоэнцефалический барьер: строение, гистология

Гемато-энцефалический барьер (ГЭБ— физиологический барьер между кровеносной системой и центральной нервной системой.

Гематоэнцефалический барьер

ГЭБ имеется у всех позвоночных, главной его функцией является поддержание гомеостаза мозга.

Гемато-энцефалический барьер защищает нервную ткань от циркулирующих в крови микроорганизмов, токсинов, клеточных и гуморальных факторов иммунной системы, которые воспринимают ткань мозга как чужеродную. Он выполняет функцию высокоселективного фильтра, через который в мозг поступают питательные вещества, а в кровеносное русло выводятся продукты его жизнедеятельности.

Организм человека и высших животных обладает рядом специ­фических физиологических систем, обеспечивающих приспособление (адаптацию) к постоянно изменяющимся условиям существования. Этот процесс тесно связан с необходимостью обязательного сохра­нения постоянства существенных физиологических параметров, внутренней среды организма, физико-химического состава тканевой жидкости межклеточного пространства.

Среди гомеостатических приспособительных механизмов, при­званных защитить органы и ткани от чужеродных веществ и регули­ровать постоянство состава тканевой межклеточной жидкости, веду­щее место занимает гематоэнцефалический барьер. По определению Л. С. Штерн, гематоэнцефалический барьер объединяет совокупность физиологических механизмов и соответствующих ана­томических образований в центральной нервной системе, участвую­щих в регулировании состава цереброспинальной жидкости (ЦСЖ).

В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее: 1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр — нервная клетка; 2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, ха­рактеризующим определенный физиологический механизм. Как лю­бой существующий в организме физиологический механизм, гема­тоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем; 3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятель­ности и метаболизма нервной ткани.

Гематоэнцефалический барьер регулирует проникновение из кро­ви в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.

Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональ­ному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.

Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств . Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регуляторная функция обеспечивает относительное постоянство физи­ческих и физико-химических свойств, химического состава, физи­ологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогематического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.

Ведущим компонентом морфологического субстрата гематоэнце­фалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения веще­ства в клетки мозга: через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или глиальной клеткой, которая выполняет питательную функцию (так называемый ликворный путь), и через стенку капилляра. У взрослого организма основным путем движения вещества в нервные клетки является гематогенный (через стенки капилляров); ликворный путь становится вспомогательным, дополнительным.

Проницаемость гематоэнцефалического барьера зависит от фун­кционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Функциональная система гематоэнцефалического барьера представляется важным компонентом нейрогуморальной регуляции. В частности, через гематоэнцефалический барьер реализуется прин­цип обратной химической связи в организме. Именно таким образом осуществляется механизм гомеостатической регуляции состава внут­ренней среды организма.

Регуляция функций гематоэнцефалического барьера осуществ­ляется высшими отделами ЦНС и гуморальными факторами. Зна­чительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. В нейрогуморальной регуляции гематоэнце­фалического барьера важное значение имеют обменные процессы, в частности в ткани мозга.

При различных видах церебральной патологии, например травмах, различных воспалительных пораже­ниях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фарма­кологическими воздействиями можно увеличить или уменьшить про­никновение в мозг различных веществ, вводимых извне или циркулирующих в крови.

 

⇐ Предыдущая12345678910Следующая ⇒



.

ГЕМАТО-ЭНЦЕФАЛИЧЕСКИЙ БАРЬЕР (греч, haima, haimat[os] кровь + лат. encephalon, от греч, enkephalos головной мозг) — физиологический механизм, избирательно регулирующий обмен веществ между кровью и центральной нервной системой. Г.-э.

ГЭБ. Его значение для структуры и функции мозга

б. осуществляет также защитную функцию, препятствуя проникновению в цереброспинальную жидкость и мозг (головной и спинной) некоторых чужеродных веществ, попадающих в кровь, и промежуточных продуктов обмена веществ, образующихся в организме при некоторых патол, состояниях. Поэтому условно различают тесно связанные между собой защитную и регулирующую функции Г.-э. б., обеспечивающие относительную неизменность состава, физ.-хим. и биол, свойств цереброспинальной жидкости и адекватность микросреды отдельных нервных элементов.

На существование механизма, ограничивающего переход некоторых хим. соединений, в основном красителей, из крови в мозг, указывали П. Эрл их (1885), М. Левандовский, (1900), Гольдманн (E. Goldmann, 1913) и др. Термин «гемато-энцефалический барьер» предложен Л. С. Штерн и Готье (R. Gauthier) в 1921 г. Штерн, основываясь на анализе большого экспериментального материала, впервые сформулировала физиол, основы учения о Г.-э. б. и определила значение Г.-э. б. для деятельности ц. н. с.

Морфол, субстратом Г.-э. б. являются анатомические элементы, расположенные между кровью и нейронами: эндотелий капилляров, базальная мембрана клетки, глия, сосудистые сплетения, оболочки мозга. Большое значение в структурах Г.-э. б. имеет так наз. основное вещество, в состав к-рого входят комплексы белка и полисахаридов — мукополисахариды. Многие авторы особую роль в осуществлении функции Г.-э. б. приписывают клеткам нейроглии. Конечные периваскулярные (присосковые) ножки астроцитов, прилегающие к наружной поверхности капилляров, могут избирательно экстрагировать из кровотока вещества, необходимые для питания нейронов, и возвращать в кровь продукты их обмена [Брайерли (J. В. Brierley), 1957]. При этом во всех структурах Г.-э. б. могут происходить ферментативные реакции, способствующие перестройке, окислению, нейтрализации и разрушению поступающих из крови веществ (А. Лабори, 1964).

Оценка регулирующей функции производится путем определения коэффициента проницаемости (точнее, коэффициента распределения), т. е. отношения концентрации того или иного вещества в цереброспинальной жидкости к его концентрации в сыворотке крови. Для большинства изучаемых элементов крови коэффициент проницаемости меньше единицы и лишь для ионов магния и хлора он больше единицы. Величина коэффициента зависит от состава крови и цереброспинальной жидкости.

Применение радиоизотопной индикации (см. Радиоизотопная диагностика) привело к нек-рому пересмотру представления о Г.-э. б. Установлено, что проницаемость Г.-э. б. неодинакова в различных отделах мозга и в свою очередь может по-разному изменяться. Получила широкое распространение теория множественности барьерных образований (система мозговых барьеров), функционирующих в зависимости от химизма и меняющихся потребностей тех или иных нервных структур. Установлено, что в мозге имеются «безбарьерные» зоны (area postrema, нейрогипофиз, ножка гипофиза, эпифиз, серый бугор), куда введенные в кровь вещества поступают почти беспрепятственно. В некоторых отделах мозга (напр., в гипоталамусе) проницаемость Г.-э. б. по отношению к биогенным аминам, электролитам, нек-рым чужеродным веществам выше, чем в других отделах мозга, что обеспечивает своевременное поступление гуморальной информации в высшие вегетативные центры; возникновение некоторых патол, процессов (нарушение механизмов регуляции функций, вегетативные расстройства, диэнцефальные синдромы и др.) может быть связано с повышением или снижением проницаемости Г.-э. б.

Защитная и регулирующая функции Г.-э. б. изучаются у человека и животных в онто- и филогенезе, а также при различных состояниях организма — во время менструации и беременности, при изменениях температуры тела и окружающей среды, в условиях нарушенного питания, голодания и авитаминоза, при утомлении, бессоннице, эндокринных и вегетативных дисфункциях, асфиксии, нервных расстройствах и расстройствах внутренних органов, инфекциях, наркозе, черепно-мозговой травме, шоке, введении различных фармакол, препаратов, воздействии ионизирующего излучения и т. д. Так, в частности, установлено, что в процессе филогенеза нервные клетки становятся более чувствительными к изменениям состава и свойств окружающей их среды. Это ведет к совершенствованию барьерных механизмов ц. н. с. Так, напр., некоторые вещества легко проникают из крови в мозг у низкоорганизованных, но задерживаются Г.-э. б. у более высокоорганизованных организмов. Кроме того, Г.-э. б. отличается высокой проницаемостью у эмбрионов и новорожденных по сравнению с взрослым организмом. Существует предположение, что высокая лабильность нервной системы у детей в известной степени зависит от повышенной проницаемости их Г.-э.

б.

Большое теоретическое и практическое значение имеет вопрос о селективности (избирательной проницаемости) Г.-э. б. по отношению к веществам, нередко близким друг к другу по хим. строению и биол, свойствам. Так, напр., L-дофа в ц. н. с. проникает легко, а D-дофа и дофамин задерживаются. Селективность Г.-э. б. при переходе веществ из крови в спинномозговую жидкость и ц. н. с. значительно более выражена, чем при переходе из спинномозговой жидкости в кровь. Г.-э. б. в данном случае подобен селективному фильтру в направлении кровь — ц. н. с. или предохранительному клапану в обратном направлении (Л. С. Штерн и Готье, 1918).

Согласно современным представлениям, Г.-э. б. является саморегулирующейся системой, состояние к-рой зависит от потребностей нервных клеток и уровня метаболических процессов не только в самом мозге, но и в других органах и тканях организма. Проницаемость Г.-э. б. регулируется нервными и гуморальными механизмами. Вместе с тем еще нет теории, полностью объясняющей закономерность перехода различных веществ из крови в цереброспинальную жидкость и ткани мозга.

Изучение защитной функции Г.-э. б. имеет особое значение для выявления патогенеза и в терапии заболеваний ц. н. с. Снижение проницаемости барьера способствует проникновению в ц. н. с. не только чужеродных веществ, но и продуктов нарушенного метаболизма; в то же время повышение сопротивляемости Г.-э. б. закрывает (частично или полностью) путь зазащитным телам, гормонам, метаболитам, медиаторам. Крайне ограниченная проницаемость Г.-э. б. по отношению к нек-рым химиотерапевтическим препаратам, применяемым в клин, практике (соединениям мышьяка, висмута, ртути и др.), к антибиотикам (напр., пенициллину, стрептомицину), антителам (антитоксинам, агглютининам, гемолизинам) нередко является препятствием при лечении заболеваний ц. н. с. Предложены различные методы повышения проницаемости Г.-э. б. (перегревание или переохлаждение организма, воздействие рентгеновскими лучами, прививка малярии и т. д.), однако они не всегда эффективны. В этих случаях возможно введение фармакол. препаратов, леч. сывороток, биологически активных веществ непосредственно в цереброспинальную жидкость (поясничным или подзатылочным уколом по Штерн).

Для изучения функции Г.-э. б. применяются обычно вещества, проникающие в цереброспинальную жидкость и мозг в незначительных количествах. С этой целью в экспериментах на животных чаще всего в кровь вводят кислые (в первую очередь трипановый синий) или основные красители, соли йодистоводородной, пикриновой или салициловой к-т и определяют их содержание (количественная или качественная проба) в цереброспинальной жидкости и ткани мозга. Широкое применение нашли методы авторадиографии (см.), гистол., химии, электронной микроскопии. ; В клин, практике предложены бромный, йодный, салициловый, нитратный, ураниновый, гемолизиновый, глюкозный и другие методы исследования Г.-э. б. По Вальтеру (F. Walter, 1929), вещества, применяемые с этой целью, должны удовлетворять следующим требованиям: распределяться в крови и цереброспинальной жидкости до того, как наступает их выделение, не расщепляться в организме и не связываться с белками; они не должны изменять состояние Г.-э. б. и приносить вред организму. Необходимо выбирать индикатор, поддающийся точному количественному определению.

С известными предосторожностями для исследования состояния Г.-э. б. радиоизотопный метод может быть использован и у человека.

См. также Барьерные функции, Цереброспинальная жидкость.

Библиография: Кассиль Г. Н. Гемато-энцефалический барьер, М., 1963; Штерн Л. С. Непосредственная питательная среда органов и тканей, Физиологические механизмы, определяющие ее состав и свойства, М., 1960; В a k а у L. The blood-brain barrier, with special regard to the use of radioactive isotopes, Springfield, 1956; Brain-barrier systems ed. by A. Lajtha, Amsterdam, 1968; Dob-b i n g J. The blood-brain barrier, Physiol. Rev., v. 41, p. 130, 1961; Handbook of physiology, sec. 1 — Neurophysiology, ed. by J. Field a. o., v. 3, Washington, 1960.

Г. H. Кассиль.

.

Добавить комментарий