Как решать неполное квадратное уравнение пример

.

Решение квадратных уравнений

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

— это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда — это просто число D = b2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача.

Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2x − x2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left( -1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left( -1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

\[x=\frac{-12+\sqrt{0}}{2\cdot 1}=-6\]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется , если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0.

Решение неполных квадратных уравнений.

Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Смотрите также:

  1. Теорема Виета
  2. Следствия из теоремы Виета
  3. Стандартный вид числа
  4. Комбинаторика в задаче B6: легкий тест
  5. Задача C2: уравнение плоскости через определитель
  6. Задачи на проценты считаем проценты с помощью формулы

Квадратное уравнение имеет вид ax2 + bx + c = 0.

Неполными квадратными уравнениями являются уравнения трех видов:

  • ax2 + bx = 0, когда коэффициент c = 0.
  • ax2 + c = 0, когда коэффициент b = 0.
  • ax2 = 0, когда и b и с равны 0.

Коэффициент же a по определению квадратного уравнения не может быть равен нулю.

Неполные квадратные уравнения решаются проще, чем полные квадратные. Способы решения различаются в зависимости от вида неполного квадратного уравнения.

Проще всего решаются уравнения вида ax2 = 0. Если a по определению квадратного уравнения не может быть равно нулю, то очевидно, что нулю может быть равен только x2, а значит, и сам x. У уравнений такого вида всегда есть один корень, он равен 0.

Неполные квадратные уравнения. Решение неполных квадратных уравнений

Например:

–3x2 = 0
x2 = 0/–3
x2 = 0
x = √0
x = 0

Уравнения вида ax2 + c = 0 преобразуются к виду ax2 = –c и решаются аналогично предыдущему. Однако корней здесь либо два, либо не одного.

ax2 + c = 0
ax2 = –c
x2 = –c/a
x = √(–c/a)

Здесь если подкоренное выражение отрицательно, то корней у уравнения нет. Если положительно, то корней будет два: √(–c/a) и –√(–c/a). Пример решения подобного уравнения:

4x2 – 16 = 0
4x2 = 16
x2 = 16 / 4
x2 = 4
x = √4
x1 = 2; x2 = –2

Неполные квадратные уравнения вида ax2 + bx = 0 решается вынесением общего множителя за скобку. В данном случае им является x. Получается уравнение x(ax + b) = 0. Это уравнение имеет два корня: либо x = 0, либо ax + b = 0. Решая второе уравнение получаем x = –b/a. Таким образом, уравнения вида ax2 + bx = 0 имеют два корня: x1 = 0, x2 = –b/a. Пример решения такого уравнения:

3x2 – 10x = 0
x(3x – 10) = 0
x1 = 0; x2 = 10/3 = 3,(33)

Нахождение корней квадратного уравнения 8 класс

Формула
Корни квадратного уравнения ax2 + bx + c = 0 можно найти по
формуле: , где дискриминант

квадратного уравнения.

Возможны три правила:

Правило 1
1.  D > 0.

8.2.1. Решение неполных квадратных уравнений

Тогда уравнение имеет 2 различных корня:

Пример
2x2 + 7x — 4 = 0;

a = 2, b = 7, c = -4.

D = 72 — 4 • 2 • (- 4) = 81 > 0,

x1 = -7 — ? 812 • 2 = — 4;

x2 = -7 + ? 812 • 2 = 12.

Правило 2
2.  D = 0. Тогда уравнение имеет единственный корень.

Пример
x2 — 4x + 4 = 0.

D = (-4)2 — 4 • 1 • 4 = 0, x = —  -4 2 • 1 = 2.

Заметим, что x2 — 4x + 4 = 0 x = 2.

Правило 3
3.D

Пример
3x2 — x + 7 = 0.

D = (-1)2 — 4 • 3 • 7 = -83

С четным вторым коэффициентом

Правило, формулы
Если b = 2k, то корни уравнения ax + 2kx + c = 0 находятся по формуле:

Где:

Пример 1
1.  x + 18x + 32 = 0.

a = 1; b = 18 => k = b2 = 9; c = 32.

D1 = D4 = ( 182)2 — 1 • 32 = 49 > 0, значит уравнение имеет 2 корня:

x1 = -9 -? 491 = -16, x2 = -9 + 7 = -2.

Пример 2
2.  3x2 + 2x + 1 = 0.

a = 3; b2 = 1; c = 1.

D1 = D4 = 12 — 1 • 3 = -2

Пример 3
3.  196x2 + 28x + 1 = 0.

a = 196; b2 = -14; c = 1.

D1 = D4 = (- 14)2 — 196 = 0, значит уравнение имеет один корень.

x =  14 196 =  1 14.

Формулы сокращенного умножения

Формулы сокращенного умножения.

Цели:

— Изучение формул сокращенного умножения: квадрата суммы и квадрата разности двух выражений; разности квадратов двух выражений; куба суммы и куба разности двух выражений; суммы и разности кубов двух выражений.

— Применение формул сокращенного умножения при решении примеров.

Для упрощения выражений, разложения многочленов на множители, приведения многочленов к стандартному виду используются формулы сокращенного умножения.

Решение квадратных уравнений

Формулы сокращенного умножения нужно знать наизусть.

Пусть а, b   R. Тогда:

1. Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a + b)2 = a2 + 2ab + b2

2. Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a — b)2 = a2 — 2ab + b2

3. Разность квадратов двух выражений равна произведению разности этих выражений и их суммы.

a2 — b2 = (a -b) (a+b)

4. Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

5. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

(a — b)3 = a3 — 3a2b + 3ab2 — b3

6. Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.

a3 + b3 = (a + b) (a2 — ab + b2)

7. Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.

a3 — b3 = (a — b) (a2 + ab + b2)

Применение формул сокращенного умножения при решении примеров.

Пример 1.

Вычислить

а) (40+1)2

б) 982

Решение:

а) Используя формулу квадрата суммы двух выражений, имеем

(40+1)2 = 402 + 2 · 40 · 1 + 12 = 1600 + 80 + 1 = 1681

б) Используя формулу квадрата разности двух выражений, получим

982 = (100 – 2)2 = 1002 — 2 · 100 · 2 + 22 = 10000 – 400 + 4 = 9604

Пример 2.

Вычислить

Решение

Используя формулу разности квадратов двух выражений, получим

Пример 3.

Упростить выражение

(х — у)2 + (х + у)2

Решение

Воспользуемся формулами квадрата суммы и квадрата разности двух выражений

(х — у)2 + (х + у)2 = х2 — 2ху + у2 + х2 + 2ху + у2 = 2х2 + 2у2

Формулы сокращенного умножения в одной таблице:

(a + b)2 = a2 + 2ab + b2
(a — b)2 = a2 — 2ab + b2
a2 — b2 = (a — b) (a+b)
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a — b)3 = a3 — 3a2b + 3ab2 — b3
a3 + b3 = (a + b) (a2 — ab + b2)
a3 — b3 = (a — b) (a2 + ab + b2)

Вперед

Оглавление.

1.Выделение полного квадрата. Формулы корней квадратного уравнения.
2.Примеры решения квадратных уравнений.
3.Решение неполных квадратных уравнений.
4.Разложение квадратного трехчлена на сомножители.

Определение:

Уравнение вида


, где


называется квадратным уравнением.

Из любого квадратного трехчлена или многочлена второй степени можно выделить полный квадрат, т.е. преобразовать к виду:


.

Для того, чтобы выделить полный квадрат необходимо вспомнить формулы сокращенного умножения «квадрат суммы» и «квадрат разности»:

Конечно, следует всегда и везде помнить абсолютно все формулы сокращенного умножения.

Рассмотрим общий вид квадратного трехчлена:

Глядя на формулу «квадрат суммы», нужно привести к такому виду, что первым слагаемым будет квадрат какого-либо выражения:



[ ]

Второе слагаемое должно быть в виде удвоенного произведения первого выражения (которое в квадрате) на что-либо еще.



[ Обращаем внимание, что ,
т.е. ]

Третье слагаемое должно быть квадратом «остатка» второго слагаемого, его следуем прибавить и, для равновесия, отнять:

Первые три слагаемые можно свернуть по формуле :

Это и есть полный квадрат (переменная стоит только внутри скобки)
Формула:



общий вид выделения полного квадрата из произвольного квадратного трехчлена.

Возвращаемся к решению квадратного уравнения:

Требуется решить квадратное уравнение

Левую часть можно преобразовать и уравнение примет вид:

Перенесем вправо второе и третье слагаемые

Извлечем корень квадратный из обеих частей равенства.

Определение и примеры неполных квадратных уравнений

Корень извлекается с .

Преобразуем подкоренное выражение:

Перенесем второе слагаемое левой части вправо с противоположным знаком:

Преобразуем правую часть:

Получены формулы для корней квадратного уравнения. Подкоренное выражение называют дискриминантом и обозначается


.


Вывод:

Для решения квадратного уравнения



Можно воспользоваться формулами:

Замечание: Формулы верны также и для неполных квадратных уравнений, т.е.

если или .
Примеры решения различных квадратных уравнений даны в следующей главе.


Понравилась статья?

Вперед

Добавить комментарий