На сокращение скелетных мышц влияют ионы

 Поделиться 

Содержание

Механика мышечных сокращений

Если мышцу стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее сокращение. Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Механизм скольжения филаментов

Укорочение мышцы происходит за счет укорочения образующих ее саркомеров, которые, в свою очередь, укорачиваются за счет скольжения относительно друг друга актиновых и миозиновых филаментов (а не укорочения самих белков). Теория скольжения филаментов была предложена учеными Huxley и Hanson (Huxley, 1974; рис. 1). (В 1954 г. две группы исследователей — X. Хаксли с Дж. Хэнсон и А. Хаксли с Р. Нидергерке — сформулировали теорию, объясняющую мышечное сокращение скольжением нитей. Независимо друг от друга они обнаружили, что длина диска А оставалась постоянной в расслабленном и укороченном саркомере. Это позволило предположить, что есть два набора нитей — актиновые и миозиновые, причем одни входят в промежутки между другими, и при изменении длины саркомера эти нити каким-то образом скользят друг по другу. Сейчас эта гипотеза принята почти всеми.)

Актин и миозин — два сократительных белка, которые способны вступать в химическое взаимодействие, приводящее к изменению их взаимного расположения в мышечной клетке. При этом цепочка миозина прикрепляется к актиновой нити с помощью целого ряда особых «головок», каждая из которых сидит на длинной пружинистой «шее». Когда происходит сцепление между миозиновой головкой и актиновой нитью, конформация комплекса этих двух белков изменяется, миозиновые цепочки продвигаются между актиновыми нитями и мышца в целом укорачивается (сокращается). Однако, чтобы химическая связь между головкой миозина и активной нитью образовалась, необходимо подготовить этот процесс, поскольку в спокойном (расслабленном) состоянии мышцы активные зоны белка актина заняты другим белком — тропохмиозином, который не позволяет актину вступить во взаимодействие с миозином. Именно для того, чтобы убрать тропомиозиновый «чехол» с актиновой нити, требуется быстрое выливание ионов кальция из цистерн саркоплазматического ретикулума, что происходит в результате прохождения через мембрану мышечной клетки потенциала действия. Кальций изменяет конформацию молекулы тропомиозина, в результате чего активные зоны молекулы актина открываются для присоединения головок миозина. Само это присоединение осуществляется с помощью так называемых водородных мостиков, которые очень прочно связывают две белковые молекулы — актин и миозин — и способны в таком связанном виде находиться очень долго.

Для отсоединения миозиновой головки от актина необходимо затратить энергию аденозинтрифосфа-та (АТФ), при этом миозин выступает в роли АТФазы (фермента, расщепляющего АТФ). Расщепление АТФ на аденозиндифосфат (АДФ) и неорганический фосфат (Ф) высвобождает энергию, разрушает связь между актином и миозином и возвращает головку миозина в исходное положение. В дальнейшем между актином и миозином могут снова образовываться поперечные связи.

При отсутствии АТФ актин-миозиновые связи не разрушаются. Это и является причиной трупного окоченения (rigor mortis) после смерти, т. к. останавливается выработка АТФ в организме — АТФ предотвращает мышечную ригидность.

Даже при мышечных сокращениях без видимого укорочения (изометрические сокращения, см. выше) активируется цикл формирования поперечных связей, мышца потребляет АТФ и выделяет тепло. Головка миозина многократно присоединяется на одно и то же место связывания актина, и вся система миофиламентов остается неподвижной.

Внимание: Сократительные элементы мышц актин и миозин сами по себе не способны к укорочению. Мышечное укорочение является следствием взаимного скольжения миофиламентов относительно друг друга (механизм скольжения филаментов).

Как же образование поперечных связей (водородных мостиков) переходит в движение? Одиночный саркомер за один цикл укорачивается приблизительно на 5-10 нм, т.е. примерно на 1 % своей общей длины. За счет быстрого повторения цикла поперечных связей возможно укорочение на 0,4 мкм, или 20% своей длины. Поскольку каждая миофибрилла состоит из множества саркомеров и во всех них одновременно (но не синхронно) образуются поперечные связи, суммарно их работа приводит к видимому укорочению всей мышцы. Передача силы этого укорочения происходит через Z-линии миофибрилл, а также концы сухожилий, прикрепленных к костям, в результате чего и возникает движение в суставах, через которые мышцы реализуют перемещение в пространстве частей тела или продвижение всего тела.

Связь между длиной саркомера и силой мышечных сокращений

Наибольшую силу сокращений мышечные волокна развивают при длине 2-2,2 мкм. При сильном растяжении или укорочении саркомеров сила сокращений снижается (рис. 2). Эту зависимость можно объяснить механизмом скольжения филаментов: при указанной длине саркомеров наложение миозиновых и актиновых волокон оптимально; при большем укорочении миофиламенты перекрываются слишком сильно, а при растяжении наложение миофиламентов недостаточно для развития достаточной силы сокращений.

Скорость укорочения мышечных волокон

Скорость укорочения мышцы зависит от нагрузки на эту мышцу (закон Хилла, рис. 3). Она максимальна без нагрузки, а при максимальной нагрузке практически равна нулю, что соответствует изометрическому сокращению, при котором мышца развивает силу, не изменяя своей длины.

Влияние растяжения на силу сокращений: кривая растяжения в покое

Важным фактором, влияющим на силу сокращений, является величина растяжения мышцы. Тяга за конец мышцы и натяжение мышечных волокон называются пассивным растяжением. Мышца обладает эластическими свойствами, однако в отличие от стальной пружины зависимость напряжения от растяжения не линейна, а образует дугообразную кривую. С увеличением растяжения повышается и напряжение мышцы, но до определенного максимума. Кривая, описывающая эти взаимоотношения, называется кривой растяжения в покое.

Данный физиологический механизм объясняется эластическими элементами мышцы — эластичностью сарколеммы и соединительной ткани, располагающимися параллельно сократительным мышечным волокнам.

Также при растяжении изменяется и наложение друг на друга миофиламентов, однако это не оказывает влияния на кривую растяжения, т. к. в покое не образуются поперечные связи между актином и миозином. Предварительное растяжение (пассивное растяжение) суммируется с силой изометрических сокращений (активная сила сокращений).

Читайте также

рис. 1. Схема образования поперечных связей — молекулярной основы сокращения саркомера

рис. 2. Зависимость силы сокращений от длины саркомера

рис.3. Зависимость скорости укорочения от нагрузки

рис. 4. Влияние предварительного растяжения на силу сокращения мышцы. Предварительное растяжение повышает напряжение мышцы. Результирующая кривая, описывающая взаимоотношения длины мышцы и силы ее сокращения при воздействии активного и пассивного растяжения, демонстрирует более высокое изометрическое напряжение, чем в покое

Одиночное сокращение, суммация, тетанус.

При нанесении на двигательный нерв или мышцу одиночного порогового или сверхпорогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выделить три последовательных периода:

1.Латентный период. Это время от момента нанесения раздражения до начала сокращения. Его длительность около 1-2 мсек. Во время латентного периода генерируется и распространяется ПД, происходит высвобождения кальция из СР, взаимодействие актина с миозином и т.д.

2.Период укорочения. В зависимости от типа мышцы (быстрая или медленная) его продолжительность от 10 до 100 мсек.,

3.Период расслабления. Его длительность несколько больше, чем укорочения. Рис.

В режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Поэтому в организме такие сокращения встречаются редко, например так могут сокращаться быстрые глазодвигательные мышцы. Чаще одиночные сокращения суммируются.

Суммация это сложение 2-х последовательных сокращений при нанесении на нее 2-х пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефрактерного периода. Различают 2 вида суммации: полную и неполную суммацию. Неполная суммация возникает в том случае, если повторное раздражение наносится на мышцу, когда он уже начала расслабляться. Полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е.

Мышечное сокращение

в конце периода укорочения.(рис 1,2). Амплитуда сокращения при полной суммации выше, чем неполной. Если интервал между двумя раздражениями еще больше уменьшить. Например нанести второе в середине периода укорочения, то суммации не будет, потому что мышца находится в состоянии рефрактерности.

Тетанус- это длительное сокращение мышцы, возникающее в результате суммации нескольких одиночных сокращений, развивающихся при нанесении на нее ряда последовательных раздражений. Различают 2 формы тетануса: зубчатый и гладкий. Зубчатый тетанус наблюдается в том случае, если каждое последующее раздражение действует на мышцу, когда она уже начала расслабляться. Т.е. наблюдается неполная суммация (рис). Гладкий тетанус возникает тогда, когда каждое последующее раздражение наносится в конце периода укорочения. Т.е. имеет место полная суммация отдельных сокращений и (рис). Амплитуда гладкого тетануса больше, чем зубчатого. В норме мышцы человека сокращаются в режиме гладкого тетануса. Зубчатый возникает при патологии, например тремор рук при алкогольной интоксикации и болезни Паркинсона.


Дата добавления: 2016-07-27; просмотров: 1484;


Похожие статьи:

− В зависимости от условий, в которых про­исходит мышечное сокращение, различают два его основных типа — изотоническое и изо­метрическое. Сокращение мышцы, при ко­тором ее волокна укорачиваются, но напря­жение остается постоянным, называется изо­тоническим. Изометрическим является такое сокращение, при котором мышца укоро­титься не может, если оба ее конца закреп­лены неподвижно.

Механизм мышечного сокращения

В этом случае по мере раз­вития сократительного процесса напряже­ние возрастает, а длина мышечных волокон остается неизменной.

В натуральных двига­тельных актах сокращения мышц смешан­ные: даже поднимая постоянный груз, мыш­ца не только укорачивается, но и изменяет свое напряжение вследствие реальной на­грузки. Такое сокращение называется ауксотоническим.

В зависимости от частоты стимуляции выделяют одиночные и тетанические со­кращения.

Одиночное сокращение (напряжение) возникает при действии на мышцу одиноч­ного электрического или нервного импульса. Волна возбуждения возникает в месте прило­жения электродов для прямого раздражения мышцы или в области нервно-мышечного соединения и отсюда распространяется вдоль всего мышечного волокна. В изотоническом режиме одиночное сокращение икроножной мышцы лягушки начинается через короткий скрытый (латентный) период — до 0,01 с, далее следуют фаза подъема (фаза укороче­ния) — 0,05 с и фаза спада (фаза расслабле­ния) — 0,05—0,06 с. Обычно мышца укорачи­вается на 5—10 % от исходной длины. Как известно, продолжительность волны возбуж­дения (ПД) мышечных волокон варьирует, составляя величину порядка 1—10 мс (с уче­том замедления фазы реполяризации в ее конце). Таким образом, длительность оди­ночного сокращения мышечного волокна, наступающего вслед за его возбуждением, во много раз превышает продолжительность ПД.

Мышечное волокно реагирует на раздра­жение по правилу «все или ничего», т.е. отве­чает на все надпороговые раздражения стан­дартным ПД и стандартным одиночным со­кращением. Однако сокращение целой мышцы при ее прямом раздражении находит­ся в большой зависимости от силы стимуля­ции. Это связано с различной возбудимостью мышечных волокон и разным расстоянием их от раздражающих электродов, что ведет к неодинаковому количеству активированных мышечных волокон.

При пороговой силе стимула сокращение мышцы едва заметно, потому что в реакцию вовлекается лишь не­большое количество волокон. При увеличе­нии силы раздражения число возбужденных волокон растет, пока все волокна не окажут­ся сокращенными, и тогда достигается мак­симальное сокращение мышцы. Дальнейшее усиление стимулов прироста амплитуды со­кращения не вызывает.

В естественных условиях мышечные во­локна работают в режиме одиночных сокра­щений только при относительно низкой час­тоте импульсации мотонейронов, когда ин­тервалы между последовательными ПД мото­нейронов превышают длительность одиноч­ного сокращения иннервируемых ими мы­шечных волокон. Еще до прихода следующего импульса от мотонейронов мышечные во­локна успевают полностью расслабиться. Новое сокращение возникает после полного расслабления мышечных волокон. Такой режим работы обусловливает незначитель­ную утомляемость мышечных волокон. При этом ими развивается относительно неболь­шое напряжение.

Тетаническое сокращение — это дли­тельное слитное сокращение скелетных мышц. В его основе лежит явление суммации одиночных мышечных сокращений. При на­несении на мышечное волокно или целую мышцу двух быстро следующих друг за дру­гом раздражении возникающее сокращение будет иметь большую амплитуду. Сократи­тельные эффекты, вызванные первым и вто­рым раздражениями, как бы складываются, происходит суммация, или суперпозиция, со­кращений, поскольку нити актина и миозина дополнительно скользят друг относительно друга. При этом в сокращение могут вовле­каться ранее не сокращавшиеся мышечные волокна, если первый стимул вызвал у них подпороговую деполяризацию, а второй уве­личивает ее до критической величины. При получении суммации в одиночном волокне важно, чтобы второе раздражение наноси­лось после исчезновения ПД, т.е. после рефрактерного периода. Естественно, что супер­позиция сокращений наблюдается и при сти­муляции моторного нерва, когда интервал между раздражениями короче всей длитель­ности сократительного ответа, в результате чего и происходит слияние сокращений.

При сравнительно низких частотах насту­пает зубчатый тетанус, при большой часто­те — гладкий тетанус (рис. 13).

Рис. 13. Сокращения икроножной мышцы лягуш­ки при увеличении частоты раздражения седалищ­ного нерва. Суперпозиция волн сокращения и об­разование разных видов тетануса.

а — одиночное сокращение (Г = 1 Гц); б, в — зубчатый тетанус (Г= 15—20 Гц); г, д — гладкий тетанус и оптимум (Г = 25—60 Гц); е — пессимум — расслабление мышцы во время раздражения (Г= 120 Гц).

Их амплиту­да больше величины максимального одиноч­ного сокращения. Напряжение, развиваемое мышечными волокнами при гладком тетану­се, обычно в 2—4 раза больше, чем при оди­ночном сокращении. Режим тетанического сокращения мышечных волокон в отличие от режима одиночных сокращений быстрее вы­зывает их утомление и поэтому не может поддерживаться длительное время. Из-за укорочения или полного отсутствия фазы расслабления мышечные волокна не успева­ют восстановить энергетические ресурсы, из­расходованные в фазе укорочения. Сокраще­ние мышечных волокон при тетаническом режиме с энергетической точки зрения про­исходит «в долг».

До сих пор нет общепризнанной теории, объясняющей, почему напряжение, развиваемое при тетанусе, или супер­позиции сокращений, гораздо больше, чем при оди­ночном сокращении. Во время кратковременной активации мышцы вначале одиночного сокращения в поперечных мостиках между нитями актина и мио­зина возникает упругое напряжение. Однако недав­но было показано, что такой активации недостаточ­но для прикрепления всех мостиков. Когда она более длительная, обеспечиваемая ритмической сти­муляцией (например, при тетанусе), их прикрепляет­ся больше. Количество поперечных мостиков, свя­зывающих актиновые и миозиновые филаменты (а, следовательно, и развиваемая мышцей сила), согла­сно теории скользящих нитей, зависит от степени перекрывания толстых и тонких нитей, а значит, и от длины саркомера или мышцы.

Высвобождение Са2+ при тетанусе. Если стимулы поступают с высокой частотой (не менее 20 Гц), уровень Са2+ в интервалах между ними остается высоким, потому что кальциевый насос не успевает вернуть все ионы в продольную систему саркоплазматического ретикулума. В таких условиях отдельные сокращения почти пол­ностью сливаются. Это состояние устойчивого со­кращения, или тетанус, наблюдается в том случае, когда промежутки между стимулами (или потен­циалами действия в клеточной мембране) меньше примерно 1/3 длительности каждого из одиночных сокращений. Следовательно, частота стимуляции, необходимая для их слияния, тем ниже, чем больше их длительность; по этой причине она зависит от температуры. Минимальный промежуток времени между последовательными эффективными стиму­лами во время тетануса не может быть меньше рефрактерного периода, который приблизительно соответствует длительности потенциала действия.

Как выяснилось, амплитуда гладкого тета­нуса колеблется в широких пределах в зави-\ симости от частоты стимуляции нерва. При некоторой оптимальной (достаточно высокой) частоте стимуляции амплитуда гладкого тетануса становится наибольшей. Такой гладкий тетанус получил название оптимума. При дальнейшем повышении частоты стиму­ляции нерва развивается блок проведения возбуждения в нервно-мышечных синапсах, приводящий к расслаблению мышцы в ходе стимуляции нерва — пессимум Введенского.Частота стимуляции нерва, при которой на­блюдается пессимум, получила название пессимальной (см. рис. 6.4).

В эксперименте легко обнаруживается, что уменьшенная в ходе пессимальной рит­мической стимуляции нерва амплитуда мы­шечного сокращения моментально возраста­ет при возвращении частоты раздражения от пессимальной к оптимальной. В этом на­блюдении — хорошее доказательство того, что пессимальное расслабление мышцы не является следствием утомления, истощения энергоемких соединений, а является следст­вием особых соотношений, складывающих­ся на уровне пост- и пресинаптических структур нервно-мышечного синапса. Пес­симум Введенского можно получить и при прямом, но более частом раздражении мыш­цы (около 200 имп/с).

Контрактура. Контрактурой называется состояние обратимого местного устойчивого сокращения. Оно отличается от тетануса отсутствием распространяющегося потенциала действия. При этом может наблюдаться длительная локальная деполяризация мышечной мембраны, например при калиевой контрактуре, или же мембранный потенциал, близкий к уровню покоя, в частности при кофеиновой контрактуре. Кофеин при нефизиологически высоких (миллимолярных) концентрациях проникает в мышечные волокна и, не вызывая возбуждения мембраны, способствует высвобождению Са2+ из саркоплазматического ретикулума; в результате развивается контрактура.

При калиевой контрактуре степень стойкой деполяризации и сократительного напряжения волокна зависит от концентрации К+ в наружном растворе.


⇐ Предыдущая32333435363738394041Следующая ⇒


Дата публикования: 2015-07-22; Прочитано: 5124 | Нарушение авторского права страницы



studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Мышечное сокращение

Конспект лекции| Резюме лекции | Интерактивный тест | Скачать конспект

» Структурная организация скелетной мышцы
» Молекулярные механизмы сокращения скелетной мышцы
» Сопряжение возбуждения и сокращения в скелетной мышце
» Расслабление скелетной мышцы
» Фазы и режимы сокращения скелетной мышцы
» Работа скелетной мышцы
» Структурная организация и сокращение гладких мышц
» Физиологические свойства мышц

Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т.

п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Структурная организация скелетной мышцы

Мышечное волокно и миофибрилла (рис. 1). Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл , которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности.

Рис. 1. Иерархические уровни организации скелетной мышцы (по Bloom , 1968).

Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты .

Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белка актина . В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина , соединенные с нитевидными молекулами белка тропомиозина.

Миозиновые филламенты образованы повторяющимися молеку­лами белка миозина . Каждая молекула миозина имеет головку и хвост . Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик .

Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ .

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ). ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона.

Физиология скелетных мышц

Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.  

«Вверх»

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей, мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга.

Механизм скольжения нитей включает несколько последовательных событий.

•  Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

•  Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга (рис. 2, Б).

•  Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

•  Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается (рис. 2, Г).

Рис. 2. Механизм мышечного сокращения.
Объяснение – в тексте.

1 – актиновый филламент,
2
– центр связывания,
3
– миозиновый филламент,
4 – головка миозина,
5
– Z -диск саркомера.

«Вверх»

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

Рис. 3. Механизм сопряжения возбуждения и сокращения.
Объяснение – в тексте.

1 – поперечная трубочка саркоплазматичекой мембраны,
2
–саркоплазматичекий ретикулум,
3 – ион Са++ ,
4
– молекула тропонина,
5
– молекула тропомиозина.

•  В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

•  Возбуждение (потенциал действия) распространяется по мембране миофибриллы и за счет системы поперечных трубочек достигает саркоплазматического ретикулума. Деполяризации мембраны саркоплазматического ретикулума приводит к открытию в ней Са++ -каналов, через которые в саркоплазму выходят ионы Са++ (рис. 3, В).

•  Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

•  К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Для развития указанных процессов требуется некоторый период времени (10–20 мс). Время от момента возбуждения мышечного волокна (мышцы) до начала ее сокращения называют латентным периодом сокращения .

«Вверх»

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

«Вверх»

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

•  латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

•  фаза укорочения (около 50 мс);

•  фаза расслабления (около 50 мс).

Рис. 4. Характеристика одиночного мышечного сокращения. Происхождение зубчатого и гладкого тетануса.

Б – фазы и периоды иышечного сокращения,
Б – режимы мышечного сокращения, возникающие при разной частоте стимуляции мышцы.

Изменение длины мышцы показано синим цветом, потенциал действия в мышце — красным, возбудиумость мышцы — фиолетовым.

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

•  Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

•  При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

•  При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

«Вверх»

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

•  числом ДЕ, участвующих в сокращении;

•  частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

•  динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

•  статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

•  динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

•  изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

•  изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

•  ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

«Вверх»

Структурная организация и сокращение гладких мышц

Структурная организация . Гладкая мышца состоит из одиночных клеток веретенообразной формы (миоцитов), которые располагаются в мышце более или менее хаотично. Сократительные филламенты расположены нерегулярно, вследствие чего отсутствует поперечная исчерченность мышцы.

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Механизм сопряжения возбуждения и сокращения .

При возбуждении клетки Cа++ поступает в цитоплазму миоцита не только из саркоплазматичекого ретикулума, но и из межклеточного пространства. Ионы Cа++ при участии белка кальмодулина активируют фермент (киназу миозина), который переносит фосфатную группу с АТФ на миозин. Головки фосфорилированного миозина приобретают способность присоединяться к актиновым филламентам.

Сокращение и расслабление гладких мышц . Скорость удаления ионов Са++ из саркоплазмы значительно меньше, чем в скелетной мышце, вследствие чего расслабление происходит очень медленно. Гладкие мышцы совершают длительные тонические сокращения и медленные ритмические движения. Вследствие невысокой интенсивности гидролиза АТФ гладкие мышцы оптимально приспособлены для длительного сокращения, не приводящего к утомлению и большим энергозатратам.

«Вверх»

Физиологические свойства мышц

Общими физиологическими свойствами скелетных и гладких мышц являются возбудимость и сократимость . Сравнительная характеристика скелетных и гладких мышц приведена в табл. 6.1. Физиологические свойства и особенности сердечной мускулатуры рассматриваются в разделе «Физиологические механизмы гомеостаза». 

Таблица 7.1.Сравнительная характеристика скелетных и гладких мышц

Свойство

Скелетные мышцы

Гладкие мышцы

Скорость деполяризации

быстрая

медленная

Период рефрактерности

короткий

длительный

Характер сокращения

быстрые фазические

медленные тонические

Энергозатраты

высокие

низкие

Пластичность

нет

есть

Автоматия

нет

есть

Проводимость

нет

есть

Иннервация

мотонейронами соматической НС

постганглионарными нейронами вегетативной НС

Осуществляемые движения

произвольные

непроизвольные

Чувствительность к химическим веществам

низкая

высокая

Способность к делению и дифференцировке

нет

есть

Пластичность гладких мышц проявляется в том, что они могут сохранять постоянный тонус как в укороченном, так и в растянутом состоянии.

Проводимость гладкой мышечной ткани проявляется в том, что возбуждение распространяется от одного миоцита к другому через специализированные электропроводящие контакты (нексусы).

Свойство автоматии гладкой мускулатуры проявляется в том, что она может сокращаться без участия нервной системы, за счет того, что некоторые миоциты способны самопроизвольно генерировать ритмически повторяющиеся потенциалы действия.

«Вверх»

Двигательная система человека. Концентрическое сокращение

Цикл удлинения-сокращения. Общей схемой возбуждения мышц, в частности, во время выполнения задач, требующих высокой напряженности, является использование концентрической последовательности, в которой действующая мышца сначала удлиняется, а затем сокращается.

Преимущество этой стратегии заключается в том, что мышца может выполнить большую положительную работу, если она активно растягивается, прежде чем сократится. В результате этого цикла удлинения-сокращения во время концентрического сокращения выполняется большее количество работы по сравнению с тем, если бы мышца сама по себе выполняла концентрическое сокращение.

Экспериментальное доказательство этого вывода основывается на работе, выполняемой отдельной мышцей. Эксперимент состоял из двух частей: сначала мышца растягивалась, а затем стимулировалась, прежде чем сократиться и выполнить положительную работу; после этого мышца сначала стимулировалась, а затем растягивалась, прежде чем выполнить положительную работу.

Результаты каждой части эксперимента показаны в виде графиков длина-время, усилие-время и усилие-длина. Критическое сравнение выполняется на графиках усилие-длина. Фаза с показывает изменение усилия и длины при выполнении мышцей работы. Поскольку работа определяется как произведение усилия и смещения, площадь ниже кривой усилие-длина во время фазы с представляет работу, выполняемую в течение каждой части эксперимента.

Безусловно, площадь ниже этой кривой больше для второй части эксперимента, которая состояла из растягивания (удлинения) действующей мышцы; это соответствует циклу удлинения-сокращения. Соотношение между работой и энергией свидетельствует, что увеличение работы, выполняемой мышцей, требует повышения расхода энергии.

Откуда могла бы поступить эта дополнительная энергия?

Механизмы сокращения скелетных мышц

Типичное двухэлементное логическое обоснование таково. Во-первых, эксцентрическое сокращение нагружает последовательный упругий элемент в результате его растяжения, что может быть представлено в качестве передачи энергии от нагрузки последовательному упругому элементу; это представляет собой накопление упругой энергии.

Например, если удерживать упругую ленту одним концом в каждой руке и затем растянуть, действие мышц кистей рук, участвующих в растягивании ленты, накапливается в ленте в виде упругой энергии. Во-вторых, после освобождения молекулярная структура упругой ленты использует эту упругую энергию для возвращения к своей первоначальной форме.

Аналогичным образом, поскольку отношение мышечной силы к усилию нагрузки изменяется и мышца подвергается концентрическому сокращению, упругая энергия, накопленная в последовательном упругом элементе, может быть восстановлена и использована для содействия укорачивающему сокращению (положительная работа). При возбуждении мышцы в результате множества процессов обмена веществ в качестве существенного элемента химической энергии образуется АТФ.

В процессе как образования так и использования некоторая часть энергии расходуется в виде тепла. Согласно приведенному выше уравнению, если используемая химическая энергия и выделяющееся тепло остаются постоянными (допустим, для данного случая EPiS = 0), количество выполненной работы останется таким же.

Тем не менее выполняемая работа увеличивается при осуществлении эксцентрически концентрической последовательности (удлинение-сокращение). Объясняется это тем, что изменяется либо Е. Однако, согласно объяснению, основывающемуся на явлении накопления и использования упругой энергии, для осуществления работы предоставляется дополнительная энергия наряду с той, которая предоставляется химическими средствами.

На эту способность использовать накапливаемую упругую энергию оказывают влияние три переменные: время, величина удлинения и скорость удлинения. Вероятно, потеря энергии обусловливается разъединением и восстановлением во время этой задержки поперечных межклеточных мостиков, вследствие чего после восстановления миофиламенты испытывают меньшее натяжение.

Аналогично если удлиняющее сокращение слишком большое, после удлинения сохраняется меньше поперечных межклеточных мостиков и, следовательно, накапливается меньше упругой энергии. Однако при условии, что поперечные межклеточные мостики сохраняются, чем выше скорость удлинения, тем больше накапливается упругой энергии (например, Rack, Westbury, 1974).

Несмотря на широко распространенное использование явления накопления и использования упругой энергии для учета увеличения положительной работы, связанной с эксцентрическо-концентрическими сокращениями, увеличение положительной работы обусловливается, вероятно, также значительным возрастанием количества предоставляемой химической энергии.

Это увеличение предоставляемой химической энергии называется пред нагрузочным эффектом. Заметим, например, что в начале фазы с на графике усилие-длина, усилие больше во время эксцентрически концентрического состояния, чем во время изометрическо-концентрического состояния; это соответствует крайне правому пику на графиках усилие-длина.

Безусловно, в начале концентрической фазы усилие в эксцентрически концентрическом состоянии больше. Относительные вклады упругой энергии и пред нагрузочных эффектов можно оценить в результате рассмотрения высоты, которую субъекты могут преодолеть, используя два типа прыжков в высоту (Komi, Bosco, 1978).

Прыжок согнув ноги начинается из положения на корточках (угол коленного сустава около 2 рад) и просто включает разгибание коленных и голеностопных суставов; руки удерживаются вытянутыми над головой для минимизации их вклада в прыжок. Прыжок движением в противоположном направлении начинается из вертикального положения тела и включает в течение одного непрерывного движения приседание до угла коленного сустава около 2 рад и последующее разгибание коленных и голеностопных суставов, как при выполнении прыжка согнув ноги.

Основное различие между двумя этими способами заключается в методике использования сильных экстензоров коленных суставов, выполняющих около 50 % работы во время максимального дружка в высоту (Hublay, Wells, 1983); а именно, прыжок согнув ноги включает только изометрическое концентрическое сокращение экстензоров коленных суставов, в то время как прыжок движением в противоположном направлении требует эксцентрически концентрической последовательности.

zdoroviezubwБлог

Тесты&nbsp-&nbspСледующий тест&nbsp-&nbspНа первую страницу

&nbsp &nbsp &nbsp
 

Ответы и объяснения

  1. 14. (Числа увеличиваются каждый раз на 3)
  2. Контора (Люди не живут в конторах).
  3. 14 и 13. Приведены два следующих ряда чисел, увеличивающихся каждый раз на два).
  4. Кит. (Млекопитающее, остальные — рыбы).
  5. Руслан. (Волга, Жигули, Москвич и Чайка — марки автомобилей, Руслан — марка самолета).
  6. Дыра. (Слово в середине имеет то же значение, что и два слова с каждой стороны).
  7. ВОЛ.
  8. 5. (Фигуры уменьшаются слева направо.)
  9. 3. (Каждая строка содержит окружность, квадрат, ромб; картинки чередуются по вертикали и по горизонтали. Поэтому пропущенной фигурой должен быть квадрат с вертикальной и горизонтальной линиями внутри).
  10. 32. (Первое число умножается на второе, чтобы получить третье: 1 х 2 = 2; затем втрое умножается на третье, чтобы получить четвертое и т.д. 4 х 8 = 32, поэтому 32 и есть пропущенное число. Возможен другой вариант: 8. (Числа слева равны произведению 4 на число напротив).
  11. 5. (Жирные линии вращаются против часовой стрелки, кружки по часовой стрелке, а два штриха расположены перед кружком, кроме пятой фигуры, где они расположены после него).
  12. 18 и 30
  13. Ф. (В алфавитной последовательности пропускаются поочередно две и три буквы.)
  14. Урок.
  15. Рожь и дрожь. (Рожь — злак, а дрожь — мелкие сокращения мышц).
  16. 6. (Каждое число в нижнем ряду равно половине суммы двух чисел над этим числом).
  17. Палка. (Всем этим словам может предшествовать приставка «пере»).
  18. 3. (В каждом ряду и столбце есть три типа лиц, (круглые, квадратные, треугольные), носы — черные, белые и в крапинку, глаза — белые, черные или один черный, другой белый, а также — один, два или три волоса. Поэтому недостающим лицом должен быть квадрат с черным носом, тремя волосами и с глазами — одним черным, другим белым.
  19. РОК.
  20. Уланова. (Поэты: Блок, Пушкин, Есенин, Некрасов).
  21. 6.

    Studepedia.org — это Лекции, Методички, и много других полезных для учебы материалов

    (Сложить цифры на концах длинных стрелок и вычесть из суммы цифры на концах коротких стрелок).

  22. ТРЕПАНГ. (Подставить четыре буквы за скобками на место шестой, пятой, третьей и второй пропущенных букв).
  23. ЛИПА.
  24. 5. (При каждом повороте кружок и квадрат меняются местами; в последнем случае этого не происходит, поэтому 5 — лишняя фигура. Стрелка и знак вопроса остаются на своих местах).
  25. ОТЕЛЛО. (Композиторы: Моцарт, Штраус, Верди).
  26. Г. (Буква во втором столбце всегда находится на столько букв ниже буквы в первом столбце, на сколько буква в третьем столбце выше буквы в первом столбце. М на четыре буквы ниже 3, а Г на четыре буквы выше 3).
  27. 2. (Поскольку квадрат с кругом внутри превращается в круг с повернутым квадратом внутри, то треугольник с квадратом внутри становится квадратом с повернутым треугольником внутри. Штриховка переходит с внутренней стороны на внешнюю. Три прямоугольника снаружи переходят вниз и те, которые были заштрихованными, становятся черными, а те, которые были черными, становятся заштрихованными.
  28. 2. (Основная фигура поворачивается на 90 градусов. Заштрихованные и белые области меняются местами, а фигура в центре сама поворачивается на 90 градусов.
  29. СНЕГ. (Слово в скобках образуется из второй II третьей букв с конца слова перед скобками и тех же букв слова после скобок).
  30. TOP.
  31. 3. (У всех фигур или по три линии с прямым углом или по шесть линий без прямого угла).
  32. 1. (В каждом ряду и столбце имеется круглое, квадратное и линейное туловища; круглые, квадратные и линейные ступни; круглая, квадратная и треугольная головы; опущенные вниз, поднятые вверх или горизонтально расположенные руки. Поэтому недостающий человечек должен иметь линейное туловище, круглые ступни, квадратную голову и опущенные вниз руки.
  33. 10. (Число в последнем столбце равно сумме чисел в первых двух столбцах минус число в первом столбце. 13+8-11=10).
  34. Нью-Йорк. (Не столичный город).
  35. 18. (Три числа снаружи треугольника перемножаются друг на друга и результат делится на 10).
  36. Е и Ж
  37. ПОСТ.
  38. 26. ( Есть два чередующихся ряда, начинающихся с двух первых чисел, причем каждый элемент образуется удвоением предыдущего числа в своем ряду и вычитанием 2. 2 х 24 = 28; 28 — 2 — 26).
  39. Н. (Число букв между Б и каждой последующей буквой всегда простое: 2, 3, 5, 7, II и 13. Между Б и Н тринадцать слов).
  40. 238. (Каждый элемент ряда образуется следующим образом: число 3 возводится в первую, вторую, третью, четвертую и пятую степени и из результата вычитается 1, 2, 3, 4, и 5 соответственно.

Вернуться к тесту на IQ
&nbsp
&nbsp
&nbsp &nbsp &nbsp

Наверх&nbsp-&nbspТесты&nbsp-&nbspСледующий тест&nbsp-&nbspНа первую страницу
Вебмастер

Добавить комментарий