Строение коры больших полушарий головного мозга

Шпаргалка: Строение и функции коры больших полушарий мозга

Кора больших полушарий головного мозга, слой серого вещества толщиной 1—5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468—1670 см2.

Строение коры. Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80—90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры — афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры — древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2—3 слоями; новая кора состоит, как правило, из 6—7 слоев клеток; межуточные формации — переходные структуры между полями старой и новой коры, а также древней и новой коры — из 4—5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры — вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные — горизонтальные — пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений — нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры — комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая — на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя — в вертикальной и т. п.

Второй комплекс клеток новой коры — слой — ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V — выход из коры в подкорку, а среднеклеточный слой III — ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой — кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора — совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных — третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры — её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры. Кора — продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Корковая пластинка появляется в процессе внутриутробного развития человека сравнительно рано — на 2-м месяце. Раньше всего выделяются нижние слои коры (VI—VII), затем — более высоко расположенные (V, IV, III и II; )К 6 месяцам у эмбриона уже имеются все цитоархитектонические поля коры, свойственные взрослому человеку. После рождения в росте коры можно выделить три переломных этапа: на 2—3-м месяце жизни, в 2,5—3 года и в 7 лет. К последнему сроку цитоархитектоника коры полностью сформирована, хотя тела нейронов продолжают увеличиваться до 18 лет. Корковые зоны анализаторов завершают своё развитие раньше, и степень их увеличения меньше, чем у вторичных и третичных зон. Отмечается большое разнообразие в сроках созревания корковых структур у разных индивидуумов, что совпадает с разнообразием сроков созревания функциональных особенностей коры. Т. о., индивидуальное (онтогенез) и историческое (филогенез) развитие коры характеризуется сходными закономерностями.

Реферат

На тему: строение коры головного мозга

Подготовила

Любимова Ольга

Пс- 10

2011

Скачать реферат

Кора больших полушарий

Ошибка сервера в приложении ‘/’.


Ошибка выполнения

Описание: На сервере возникла ошибка приложения. Текущая пользовательская настройка ошибок для этого приложения не позволяет удаленно просматривать сведения об ошибке данного приложения (из соображений безопасности). Однако, сведения можно просматривать в браузерах, запущенных на локальном сервере.

Сведения: Для разрешения просмотра сведений данного сообщения об ошибке на локальном сервере создайте тег <customErrors> в файле конфигурации «web.config», который находится в корневом каталоге текущего веб-приложения.

В теге <customErrors> следует задать атрибут «mode» со значением «Off».

Примечания: Отображаемую в данный момент страницу ошибок можно заменить на пользовательскую страницу ошибок, изменив атрибут «defaultRedirect» тега конфигурации <customErrors> приложения таким образом, чтобы он содержал URL-адрес пользовательской страницы ошибок.

Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex) по филогенетическому признаку, то есть, по порядку возникновения у животных в процессе эволюции. Эти области коры образуют обширные связи в составе лимбической системы. У более филогенетически древних животных древняя и старая кора, как и вся Лимбическая система, отвечали преимущественно за обоняния. У человека Лимбическая система выполняет гораздо более широкие функции, связанные с эмоционально-мотивационной сферой регуляции поведения. В выполнении этих функций участвуют все три области коры.

Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимо­действия систем мозга. К древней коре относят обонятельные луковицы, в которые поступают афферентные волокна от обонятельного эпителия слизистой полости носа; обонятельные тракты, расположенные на нижней поверхности лобной доли, обонятельные бугорки, в которых расположены вторичные обонятельные центры. Это филогенетически наиболее ранняя часть коры, занимающая смежные участки лобной и височной долей на нижней и медиальной поверхностях полушарий.

Старая кора включает поясную извилину, гиппокамп и миндалину.

Поясная извилина. Имеет многочисленные связи с корой и стволовыми центрами и выполняет роль главного интегратора различных систем мозга, формирующих эмоции.

Миндалина образует также обширные связи с обонятельной луковицей.

Строение и функции коры больших полушарий мозга (стр. 1 из 2)

Благодаря этим связям обоняние у животных участвует в контроле репродуктивного поведения.

У приматов, в том числе у человека, повреждения миндалины снижают эмоциональную окраску реакций, кроме того, у них полностью исчезают агрессивные аффекты. Электрическая стимуляция миндалины вызывает преимущественно отрицательные эмоции – гнев, ярость, страх. Двустороннее удаление миндалин резко снижает агрессивность животных. Спокойные животные могут, напротив, стать неуправляемо агрессивными. У таких животных нарушается способность оценивать поступающую информацию и соотносить её с эмоциональным поведением. Миндалина участвует в процессе выделения доминирующей эмоции и мотивации и выборе поведения в соответствии с ними. Миндалина – мощнейший модификатор эмоций.

Гиппокамп располагается в медиальной части височной доли. Гиппокамп получает афферентные входы от гиппокампальной извилины (получает входы почти от всех областей неокортекса и других отделов ГМ) , от зрительной, обонятельной и слуховой систем. Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению. Деятельность гиппокампа заключается в консолидации памяти – перехода кратковременной памяти в долговременную. Повреждение гиппокампа вызывает резкое нарушение усвоения новой информации, образования кратковременной и долговременной памяти. Следовательно, гиппокамп, как, впрочем, и другие структуры лимбической системы, существенно влияет на функции неокортекса и на процессы научения. Это влияние осуществляется в первую очередь за счет создания эмоционального фона, который в значительной степени отражается на скорости образования любого условного рефлекса.

К миндалине и гиппокампу идут пути от височной доли коры, передающие информацию от зрительной, слуховой и соматической сенсорных систем. Установлены связи лимбической системы с лобными долями коры переднего мозга.

У новой коры наибольшее развитие величины, диффе­ренциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине. В лимбической системе и вообще в нервной деятельности кора занимается высшими функциями организации деятельности.

Поражение лобной доли вызывает возникновение эмоциональной тупости, трудности изменения эмоций. Именно при поражении этой области возникает так называемый лобный синдром. Префронтальная область и связанные с ней подкорковые структуры (головка хвостатого ядра, медиодорсальное ядро таламуса) формируют префронтальную систему, отвечающую за сложные когнитивные и поведенческие функции. В орбитофронтальной коре сходятся пути от ассоциативных областей коры, паралимбических областей коры и лимбических областей коры.

Таким образом, здесь пересекаются префронтальная система и лимбическая система. Такая организация определяет причастность префронтальной системы к сложным формам поведения, где необходима координация когнитивных, эмоциональных и мотивационных процессов. Целостность ее необходима для оценки текущей обстановки, возможных действий и их последствий и тем самым — для принятия решения и выработки программ поведения.

Удаление височных долей вызывает у обезьян гиперсексуальность, причем их половая активность может быть направлена даже на неодушевленные предметы.

Наконец, послеоперационный синдром сопровождается так называемой психической слепотой. Животные утрачивают способность правильной оценки зрительной и слуховой информации, и эта информация никак не связывается с собственным эмоциональным настроем обезьян.

Височные доли тесно связаны со структурами гиппокампа и миндалины и также отвечают за сохранение информации и долговременную память и играют ключевую роль в процессе перевода кратковременной памяти в долговременную. Кора височных долей также отвечает за комбинирование сохраненных в памяти следов.

 

В большом мозге человека мы различаем рассмотренные уже подкорковые ганглии основания, белое

вещество полушарий и, наконец, кору большого мозга, представляющую собой наиболее поздний по развитию

и наиболее совершенный отдел центральной нервной системы. Анатомически кора представляет собой пластину серого вещества, выстилающую наружную поверхность полушарий. Складчатость коры обусловливаетсяналичием большого количества мозговых извилин (gyri), отделенных одна от другой бороздами (suki). Мень-шая часть коры находится на поверхности, а большая — в глубине борозд. Некоторые из борозд (fissurae) отли-чаются наибольшей выраженностью и глубиной, отделяя друг от друга отдельные доли головного мозга.

Различают наружную (выпуклую) поверхность полушарий, внутреннюю их поверхность и основание.На наруж ной поверхности, мощная роландова борозда (рис. 58) отделяет лобную долю от теменной. Ниже еерасположенная сильвиева борозда отделяет лобную долю от височной и височную от теменной. Затылочнаядоля отделяется от теменной и височной линией, продолжающей книзу fissura parieto-occipitalis. Таким обра-зом, на выпуклой поверхности каждого полушария намечаются четыре доли коры головного мозга: лобная, те-менная, височная и затылочная (по другому делению — еще лимбическая и островок). Две массивные извили-ны, расположенные «по берегам» роландовой борозды, одна — кпереди от последней (передняя центральнаяизвилина) и другая — кзади от нее (задняя центральная извилина), часто выделяются в особую долю, именуе-мую областью центральных извилин.

На наружной, выпуклой поверхности различают: в собственно лобной доле (в области кпереди от пе-редней центральной извилины) три извилины, расположенные примерно горизонтально: первую, или верхнюю,лобную, вторую, или среднюю, и третью, или нижнюю, лобные извилины (см. рис. 58).Теменная доля идущей в середине ее горизонтальной бороздой (sulcus interparietalis) делится на верх-нюю и нижнюю теменные дольки. В нижней теменной дольке различают расположенную более кпереди gyrussupramarginalis и кзади от нее граничащую с затылочной долей gyrus angularis.

В височной доле заметны три горизонтально расположенные извилины: первая, или верхняя, вторая,или средняя, и третья, или нижняя, височные извилины.

На внутренней поверхности полушарий после разреза мозга по сагиттальной линии (рис. 59) хорошовыражена fissura ра-neto-occipitalis, отделяющая затылочную долю от теменной. В затылочной доле намеченаглубокая fissura calcarina, выше которой расположен cuneus и ниже — gyrus lingualis. В переднем отделе височ-ной доли находится uncus gyri hyppocampi. В середине среза видны пересеченные волокна основной комиссу-ральной спайки полушарий — согporis callosi (мозолистого тела).

На ниж ней поверхности полушарий большого мозга (на основании) в переднем отделе находятся лоб-ные доли, кзади от них — отделенные сильвиевой бороздой височные и еще более кзади — затылочные доли

Достаточно массивным образованием является (срезанный на рис. 60) мозговой ствол: ножки мозга,варолиев мост, продолговатый мозг и лежащий над последними и под затылочными долями мозжечок.

Кора представляет собой серое вещество. Микроскопическое строение ее довольно сложное; кора со-стоит из ряда слоев клеток и их волокон. Основной тип строения мозговой коры — шестислойный (рис. 61).I. Молекулярный слой, самый поверхностный, лежит непосредственно под мягкой мозговой оболочкой,беден клетками, волокна его имеют параллельное поверхности коры направление, отчего он носит еще наиме-нование тангенциального.II. Наруж ный зернистый слой расположен глубже первого, включает большое количество мелких зер-нистых нервных клеток.III. Слой малых и средних, пирамидных клеток.IV. Внутренний зернистый слой.V. Слой больших пирамидных клеток.VI. Слой полиморфных клеток состоит из клеток самой разнообразной формы (треугольных,. веретено-образных и др.).

Как видно на рис. 61, волокна перечисленных клеток имеют либо параллельное поверхности корынаправление (ассоциационные пути, связывающие между собой различные территории коры), либо являютсярадиальными, перпендикулярными к поверхности. Последнего типа волокна типичны для проекционных путей(связывающих кору головного мозга с ниже ее лежащими образованиями).

Шестислойный тип строения коры является далеко не однородным. Существуют участки коры, в кото-

рых один из слоев представляется особенно мощным, а другой весьма слабо выраженным. В других областях

коры намечается подразделение некоторых слоев на подслои, увеличивающее число слоев и т.д.

Результаты цитоархитектонических исследований сыграли известную роль в решении спорных вопро-сов о локализации функций в коре больших полушарий. Установлено, что области, связанные с определеннойфункцией, имеют свое, свойственное им строение; что участки коры, близкие по своему функциональному зна-чению, имеют известное сходство в строении как у животных, та к и у человека. Те же участки, поражения ко-торых вызывают расстройство сложных, чисто человеческих функций (например, речевых) имеются только вкоре человека, а у млекопитающих, в том числе даже у антропоморфных обезьян, отсутствуют

Анатомия спинного мозга

Спинной мозг (Medulla spinalis) лежит в позвоночном канале и представляетсобой тяж длиной 41 — 45 см (у взрослого), несколько сплющенный спереди назад.Вверху он непосредственно переходит в головной мозг, а внизу заканчиваетсязаострением — мозговым конусом — на уровне II поясничного позвонка. Отмозгового конуса вниз отходит терминальная нить, представляющая собойатрофированную нижнюю часть спинного мозга. Вначале, на II месяцевнутриутробной жизни, спинной мозг занимает весь позвоночный канал, а затемвследствие более быстрого роста позвоночника отстает в росте и перемещаетсявверх. Внутри спинного мозга имеется полость, называемая центральным каналом(Canalis centralis). Спинной мозг имеет два утолщения: шейное и поясничное,соответствующие местам выхода из него передних и задних корешков, идущих кверхней и нижней конечностям. Передней срединной щелью и задней срединнойбороздкой спинной мозг делится на две симметричные половины, каждая в своюочередь имеет по две слабовыраженные продольные борозды, из которых выходятпередние и задние корешки. Эти борозды разделяют каждую половину на трипродольных тяжа — канатика: передний, боковой и задний. В поясничном отделекорешки идут параллельно концевой нити и образуют пучок, носящий названиеконского хвоста.

Спинной мозг защищён мягкой, паутинной и твёрдойоболочками. Пространства между оболочками и канал заполнены спинномозговойжидкостью. Пространство между внешней твёрдой оболочкой и костью позвонковназывается эпидуральным и заполнено жиром и венозной сетью.

 

Спинной мозг состоит из серого и белого вещества (рис. 1). Серое веществозаложено внутри и со всех сторон окружено белым. На передней поверхностиспинного мозга, по всей его длине, залегает передняя срединная щель (fissuramediana ventralis), в которую впячивается складка мягкой мозговой оболочки —промежуточная шейная перегородка (septum cervicale intermedium). Эта щельменее глубокая у верхнего и нижнего концов спинного мозга и наиболеевыражена в средних его отделах . На задней поверхности мозга имеется оченьузкая задняя срединная борозда (sulcus medianus dorsalis), в которую проникаетпластинка глиозной ткани — задняя срединная перегородка (septum medianumdorsale). Щель и борозда делят спинной мозг на две половины — правую и левую.Обе половины соединены узким мостиком мозговой ткани, в середине которойрасполагается центральный канал (canalis centralis) спинного мозга.

Таким образом, в спинном мозге различают три парных столба серого вещества:передний, боковой и задний, которые на поперечном разрезе спинного мозганосят название переднего, бокового и заднего рогов.Передний рог имеетокруглую или четырехугольную форму и содержит клетки, дающие началопередним (двигательным) корешкам спинного мозга.

Задний рог уже и длиннее ивключает клетки, к которым подходят чувствительные волокна задних корешков.Боковой рог образует небольшой треугольной формы выступ, состоящий изклеток, относящихся к вегетативной части нервной системы.На поперечных срезах спинного мозга видно расположение белого и сероговещества. Серое вещество занимает центральную часть и имеет форму бабочки срасправленными крыльями или буквы Н. Белое вещество располагается вокругсерого, на периферии спинного мозга.

Соотношение серого и белого вещества в разных частях спинного мозга различно.В шейной части, особенно на уровне шейного утолщения, серого веществазначительно больше, чем в средних участках грудной части, где количествобелого вещества намного (примерно в 10-12 раз) превышает массу сероговещества. В поясничной области, особенно на уровне поясничного утолщения,серого вещества больше, чем белого.

Головной мозг человека его строение и функции, кора больших полушарий (Таблица)

По направлению к крестцовой частиколичество серого вещества уменьшается, но в ещё большей степени уменьшаетсяколичество белого. В области мозгового конуса почти вся поверхностьпоперечного среза выполнена серым веществом, и только по перифериирасполагается узкий слой белого.В верхней половине грудной части и в шейной части спинного мозга задняяпромежуточная борозда делит задний канатик на два пучка: более тонкий,лежащий кнутри медиальный, так называемый тонкий пучок, и более мощныйлатеральный клиновидный пучок. Ниже клиновидный пучок отсутствует.

Канатики спинного мозга продолжаются и в начальный отдел головного —

продолговатый мозг.

⇐ Предыдущая45678910111213Следующая ⇒



Шпаргалка: Строение и функции коры больших полушарий мозга

В коре больших полушарий имеются нервные клетки, аксоны которых идут к лежащим ниже отделам центральной нервной системы — к подкорковым ядрам, мозговому стволу, спинному мозгу. Большая часть этих нейронов сосредоточении передней центральной извилине, кпереди от роландовой борозды. Указанная область получила название моторной зоны. Характерной особенностью ее клеточного строения является наличие гигантских пирамидных клеток Беца, длинные отростки которых в составе пирамидного пути достигают промежуточных и двигательных нейронов спинного мозга.

 

Пространственная организация моторной зоны коры больших полушарий у человека показана на рис. 246 и 248. Как видно, двигательные точки (т. е. пункты коры больших полушарий, раздражение которых вызывает движение определенных мышц) расположены в коре неравномерно. Их локализация в передней центральной извилине соответствует последовательности сенсорного представительства в задней центральной извилине (рис. 247).

Рис. 248. Расположение двигательных точек в моторной зоне коры больших полушарий у человека (по У. Пенфилду и Расмуссену). 1 — пальцы; 2 — лодыжка; 3 — колено; 4 — бедро; 5 — туловище; 6 — плечо; 7 — локоть; 8 — запястье; 9 — кистью; 10 — мизинец; 11 — безымянный палец; 12 — средний палец; 13 — указательный палец; 14 — большой палец; 15 — шея; 16 — бровь; 17 — веко и глазное яблоко; 18 — лицо; 19 — губы; 20 — челюсть; 21 — язык; 22 — гортань. Размеры частей тела на рисунке соответствуют размерам двигательного представительства.

 

Выше всех остальных расположены двигательные точки нижних конечностей; под ними находятся двигательные точки мышц туловища, еще ниже — верхних конечностей, ниже всех — мускулатуры головы. Так как нисходящие двигательные пути перекрещиваются, то раздражение всех  указанных точек вызывает сокращение мышц противоположной стороны тела.

В моторной зоне так же, как и в сенсорной, наибольшую площадь занимает представительство мускулатуры кистей рук, лица, губ, языка и наименьшую — туловища и нижних конечностей. Размерам коркового моторного представительства соответствует точность и тонкость управления движениями дайной части тела.

Электрическое раздражение моторной зоны коры больших полушарий у человека в области двигательных точек пальцев руки вызывает в ряде случаев сокращение отдельных мышц или даже отдельных моторных единиц.

В отличие от этого раздражение двигательных точек мускулатуры туловища влечет за собой одновременное сокращение 30—50 мышц-синергистов.

Роландова борозда, разделяющая переднюю и заднюю центральные извилины, является лишь условной границей моторной и сенсорной зон. Гистологические исследования показывают, что в моторной зоне имеется большое количество чувствительных элементов; точно так же в сенсорной области обнаруживаются   гигантские пирамидные клетки.

По данным Пенфилда, электрическое раздражение передней ценральной извилины у человека в 25% случаев наряду с движением вместо движения вызывает ощущения. Соответственно раздражение задней центральной извилины в 20% случаев вызывает вместо вместо ощущения или совместно с ощущением также движение.

У животных перекрытие моторной и сенсорной зон выражено значительно больше, чем у человека.

Учитывая функциональную близость этих двух зон коры, их часто объединяют общим названием сенсомоторной зоны. И. П. Павлов рассматривал эту зону как корковый конец кинестетического (двигательного) анализатора.

Последствия поражения моторной зоны коры полушарий мозга у человека. Ранения мозговой коры в области моторной зоны или нарушения кровообращения (например, кровоизлияние) в этой области влекут за собой у человека полный или частичный паралич мускулатуры противоположной половины тела (гемиплегия). Лишь очень медленно и постепенно симптомы паралича исчезают и движения восстанавливаются, более сильно страдает при поражении моторной зоны у человека способность к отдельным мелким движениям, например пальцев руки или ноги. Сложные движения, в которых принимает участие мускулатура обеих конечностей, восстанавливаются быстрее, между тем как отдельные жвижения конечностей противоположной оперированному полушарию стороны остаются нарушенными в течение более продолжительного срока, притом в большей степени.

Нисходящие пути моторной зоны.Часть отростков пирамидных клеток моторной зоны образует кортикоспинальный тракт. Другая часть нисходящих нервных волокон, главным образом их коллатерали, направляется из моторной зоны в подкорковые структуры, образуя два вида путей. Одни из них связывают клетки моторной зоны с полосатым телом, красным ядром, черной субстанцией. Другие, идущие через варолиев мост, обеспечивают связь моторной зоны с мозжечком и образуют понто-церебеллярный тракт.

Посылая импульсы по всем этим путям к лежащим ниже отделам центральной нервной системы, моторная зона коры больших полушарий управляет деятельностью двигательного аппарата организма.

Часть нисходящих волокон моторной зоны коры направляется, кроме того, и непосредственно к клеткам ретикулярной формации и гипоталамуса, что часто обусловливает возникновение сосудистых реакций в ответ на  раздражение двигательной зоны.

Премоторная зона коры. Кпереди от моторной расположена так называемая премоторная зона коры, занимающая поля 6 и 8 по Бродману (рис. 242). Премоторная зона также очень богата пирамидными клетками. Отростки этих клеток идут как к социальным нейронам, так и к полосатому телу, хвостатому ядру, красному ядру, черной субстанции и др. Отсюда возбуждения по ретикуло-, текто-, рубро- и вестибуло-спинальным путям поступают в спинной мозг к промежуточным и двигательным нейронам.

Электрическое раздражение отдельных участков поля 6 вызывает движения головы и туловища в сторону, противоположную раздражаемому полушарию. Эти движения имеют координированный характер и сопровождаются изменениями тонуса мышц. В ответ на раздражения одного из участков поля 6 возникают глотательные движения, резкие изменения дыхания и крик.

Оперативное удаление небольших участков премоторной зоны у человека  (во время нейрохирургических вмешательств) приводит к нарушению двигательных навыков, хотя тонкие движения руки при этом и сохраняются.

Удаление некоторых участков премоторной зоны коры больших полушарии приводит к возникновению рефлексов, не свойственных здоровому взрослому человеку. Так, после удаления премоторной области коры, от которой зависят движения руки, возникает усиленный хватательный рефлекс: легкое тактильное прикосновение к ладони вызывает сильное хватательное движение. Оно напоминает хватательный рефлекс у новорожденных детей в период, предшествующий функциональному созреванию пирамидного тракта.
При удалении области, где находится представительство мышц ноги в моторной или премоторной коре, у взрослых появляется рефлекс Бабинского.

Дополнительная моторная область. Дополнительная моторная область расположена на медиальной поверхности полушарии. Диаметр этой области не превышает 1—2 см. Раздражение ее различных частей показывает, что в этой зоне имеется представительство мускулатуры всех частей тела.

При раздражении дополнительной моторной области наблюдаются изменения позы, сопровождающиеся двусторонними движениями ног и туловища. Часто при стимуляции этой области возникают различные вегетативные реакции — изменение ширины зрачков, учащение сердцебиений и др. Предполагают, что дополнительная зона играет вспомогательную роль в управлении позой человека, которое осуществляется моторной и премоториой областями.

Участки коры, управляющие движениями глаз. Раздражение разных пунктов полей 19 и 8 сопровождается координированными движениями обоих глаз. Показано, что пути от поля 19 в затылочной доле коры идут прямо к стволу мозга и обусловливают фиксацию глаз на рассматриваемом предмете. В отличие от поля 19 в затылочной доле поле 8, расположенное в лобной  доле, связано с произвольными движениями глаза.

Кора больших полушарий. Зоны коры. Значение лобной, височной и теменной коры.

Кора больших полушарий — наиболее молодой в филогенетическом отношении отдел мозга, по своим структурным и функциональным особенностям отличается от других частей центральной нервной системы. Являясь ее высшим отделом на основе безусловных и условных рефлексов, кора отвечает за совершенную

организацию поведения животного и человека. Она представляет собой слой серого вещества толщиной

1,3 — 4,5 мм.

Строение коры больших полушарий головного мозга.

Благодаря складкам, образующим извилины и борозды мозга, поверхность коры составляет 2200 см2. В ее состав входит более 10 млрд нейронов и еще больше глиальных клеток. Филогенетически кору больших полушарий делят на древнюю (архикортекс), старую (палеокортекс) и новую (неокортекс). К архикортексу относят обонятельные луковицы, обонятельные тракты, расположенные на нижней поверхности лобной доли, обонятельные бугорки с обонятельными центрами. Палеокортекс включает поясную извилину, гиппокамп и миндалину. Все остальные области относят к неокортексу, который особенно хорошо развит у млекопитающих и человека. В коре различают три основных типа нейронов: пирамидные, звездчатые, веретенообразные. Пирамидные клетки, имеющие длинные аксоны, заходящие в другие отделы мозга и дендриты, покрытые большим количеством шипиков — синаптических структур, благодаря которым нервная клетка контактирует с другими нервными элементами. Шипики крайне чувствительны к различным факторам: гипоксии, асфиксии, влиянию токсических веществ, под действием которых они атрофируются, и при этом

нарушаются функциональные связи. Звездчатые клетки имеют короткие дендриты и аксон, их функция сводится к обеспечению связей между нейронами самой коры. Веретенообразные клетки образуют вертикальные или горизонтальные связи нейронов разных слоев коры. Неокортекс имеет шестислойное строение. Первый слой — молекулярный, или плексиформный, содержит мало клеток, а в основном нервные волокна, образованные восходящими дендритами пирамидных нейронов и волокнами неспецифических ядер

зрительного бугра, регулирующих уровень возбудимости коры больших полушарий. Второй слой — наружный зернистый, или наружный гранулярный, состоит из звездчатых клеток, ответственных за циркуляцию возбуждения в коре, т.е. кратковременную память. Третий слой — наружный пирамидный состоит из малых пирамидных клеток и совместно со вторым слоем обеспечивает «межкорковую»передачу информации. Четвертый слой — внутренний зернистый содержит звездчатые клетки, на которых заканчиваются специфические таламокортикальные афферентные пути от анализаторов. Пятый слой — внутренний слой крупных пирамидных клеток, аксоны которых спускаются в продолговатый и спинной мозг. В моторной коре в этом слое находятся гигантские пирамидные клетки Беца, апикальные дендриты которых достигают поверхностных слоев, а самые длинные аксоны образуют пирамидный тракт, достигающий спинного мозга. Шестой слой — полиморфные клетки веретенообразной и треугольной формы, образующие кортикоталамические пути. Распределение нейронов различается в определенных областях коры. Это позволило Бродману выделить 53 цитоархитектонических поля. Кроме того, по функциональным признакам нейроны коры объединяются в специальные модули, «колонки», расположенные вертикально. Каждая колонка отвечает за определенный вид информации. Она связана с соседними колонками реципрокными отношениями — возбуждение одной приводит к торможению соседних. Так, например, каждая колонка связана с определенным суставом и от нее идет команда к мышцам. Возбуждающим медиатором пирамидных клеток может быть или глутамат или аспартат, тормозным — ГАМК. Часть нейронов выделяет моноамины: норадреналин и дофамин, другая — ацетилхолин. Локализация функций в коре больших полушарий В настоящее время принято делить кору на сенсорные, двигательные, или моторные, и ассоциативные зоны. Такое деление было получено благодаря экспериментам на животных с удалениями различных участков коры, наблюдениями за больными, имеющими патологический очаг в мозге, а также с помощью прямого электрического раздражения коры и периферических структур с регистрацией электрической активности в коре. В сенсорных зонах представлены корковые концы всех анализаторов. Для зрительного он располагается в затылочной доле мозга (поля 17, 18, 19). В поле 17 заканчивается центральный зрительный путь, информирующий о наличии и интенсивности зрительного сигнала. Поля 18 и 19 анализируют цвет, форму, размеры и качество предмета. При поражении поля 18 больной видит, но не узнает предмета и не различает его цвета (зрительная агнозия). Корковый конец слухового анализатора локализуется в височной доле коры (извилина Гешля), поля 41,42,22. Они участвуют в восприятии и анализе слуховых раздражений, организации слухового контроля речи. Больной, имеющий повреждение поля 22, теряет способность понимать значение произносимых слов. В височной доле располагается также корковый конец вестибулярного анализатора.

Кожный анализатор, а также болевая и температурная чувствительность проецируются на заднюю центральную извилину, в верхней части которой представлены нижние конечности, в средней — туловище, в нижней — руки и голова. В коре теменной доли заканчиваются пути соматической чувствительности, относящиеся к речевой функции, связанной с оценкой воздействия на рецепторы кожи, веса и свойств поверхности, формы и размера предмета. Корковый конец обонятельного и вкусового анализаторов расположен в гиппокампальной извилине. При раздражении этой области возникают обонятельные галлюцинации, а ее повреждение приводит к аносмии (потере способности ощущать запахи). Моторные зоны находятся в лобных долях в области передней центральной извилины мозга, раздражение которой вызывает двигательную реакцию. Кора прецентральной извилины (поле 4) представляет первичную двигательную зону. В пятом слое этого поля находятся очень крупные пирамидные клетки (гигантские клетки Беца). Лицо проецируется на нижнюю треть прецентральной извилины, рука занимает ее среднюю треть, туловище и таз — верхнюю треть извилины. Двигательная зона коры для нижних конечностей находится на медиальной поверхности полушария в области передней части парацентральной дольки. Премоторная область коры (поле 6) располагается кпереди от первичной двигательной зоны. Поле 6 называют вторичной моторной областью. Ее раздражение вызывает вращение туловища и глаз с подниманием контралатеральной руки. Аналогичные движения наблюдаются у больных во время приступа эпилепсии, если эпилептический очаг локализуется в этой области. Недавно доказана ведущая роль поля 6 в реализации двигательных функций. Поражение поля 6 у человека вызывает резкое ограничение двигательной активности, с трудом выполняются сложные комплексы движений, страдает спонтанная речь. К полю 6 примыкает поле 8 (лобное глазодвигательное), раздражение которого сопровождается поворотом головы и глаз в сторону, противоположную раздражаемой. Стимуляция различных участков двигательной коры вызывает сокращение соответствующих мышц на противоположной стороне. Передние отделы лобной коры связывают с «творческим» мышлением. С клинической и функциональной точек зрения интересной областью является нижняя лобная извилина (поле 44). В левом полушарии она связана с организацией двигательных механизмов речи. Раздражение этой области может вызвать вокализацию, но не членораздельную речь, а также прекращение речи, если человек говорил. Поражение этой области приводит к моторной афазии — больной понимает речь, но сам говорить не

может. К ассоциативной коре относят теменно-височно-затылочную, префронтальную и лимбическую области. Она занимает около 80% всей поверхности коры больших полушарий. Ее нейроны обладают мультисенсорными функциями. В ассоциативной коре происходит интеграция различной сенсорной информации и формируется программа целенаправленного поведения, ассоциативная кора окружает каждую проекционную зону, обеспечивая взаимосвязь, например, между сенсорными и моторными областями коры. Нейроны, расположенные в этих областях, обладают полисенсорностью, т.е. способностью отвечать как на сенсорную, так и моторную информацию. Теменная ассоциативная область коры больших полушарий участвует в формировании субъективного представления об окружающем пространстве, о нашем теле. Височная область коры участвует в речевой функции посредством слухового контроля речи. При поражении слухового ццентра речи больной может говорить, правильно излагать свои мысли, но не понимает чужой речи (сенсорная слуховая афазия). Эта область коры играет определенную роль в оценке пространства. Поражение зрительного центра речи приводит к потере способности читать и писать. С височной корой связывают функцию памяти и сновидений. Лобные ассоциативные поля имеют прямое отношение к лимбическим отделам мозга, они принимают участие в формировании программы сложных поведенческих актов в ответ на воздействие внешней среды на основе сенсорных сигналов всех модальностей. Особенностью ассоциативной коры является пластичность нейронов, способных к перестройкам в зависимости от поступающей информации.

После операции удаления какой-либо области коры в раннем детстве утраченные функции этой области полностью восстанавливаются. Кора больших полушарий способна, в отличие от нижележащих структур мозга, длительно, в течение всей жизни сохранять следы поступившей информации, т.е. участвовать в механизмах долговременной памяти. Кора больших полушарий — регулятор вегетативных функций организма («кортиколизация функций»). В ней представлены все безусловные рефлексы, а также внутренние органы. Без коры невозможно выработать условные рефлексы на внутренние органы. При раздражении интерорецепторов методом вызванных потенциалов, электростимуляции и разрушения определенных участков коры доказано ее влияние на деятельность различных органов. Так, разрушение поясной извилины изменяет акт дыхания, функции сердечно-сосудистой системы, желудочно-кишечного тракта. Кора тормозит эмоции — «умейте властвовать собой».

 



Добавить комментарий