A 2 b 2 c 2

Рассмотрим квадрат трех слагаемых:

(a + b + c)2

Представим его в таком виде:

((a + b) + c)2

Если рассматривать (a + b) как одно слагаемое, то мы можем применить формулу квадрата суммы для двух слагаемых:

((a + b) + c)2 = (a + b)2 + 2(a + b)c + c2 = a2 + 2ab + b2 + 2ac + 2bc + c2

Итак в результате преобразования мы получили:

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc

Если бы слагаемых было 4, то в результате преобразования выглядели так:

(a + b + c + d)2 = ((a + b) + (c + d))2 = (a + b)2 + 2(a+b)(c+d) + (c + d)2 = a2 + 2ab + b2 + 2ac + 2ad + 2bc + 2bd + c2 + 2cd + d2

В результате была бы получена следующая формула:

(a + b + c + d)2 = a2 + b2 + c2 + d2 + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd

Вообще независимо от того, сколько слагаемых в квадрате суммы, при раскрытии скобок получается сумма квадратов всех слагаемых плюс удвоенные пары произведений этих слагаемых.

Квадрат суммы и разности

Квадрат суммы

Выражение (a + b)2 — это квадрат суммы чисел a и b. По определению степени выражение (a + b)2 представляет собой произведение двух многочленов (a + b)(a + b). Следовательно, из квадрата суммы мы можем сделать выводы, что

(a + b)2 = (a + b)(a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2,

т. е. квадрат суммы двух чисел равен квадрату первого числа, плюс удвоенное произведение первого числа на второе, плюс квадрат второго числа.

Из правила следует, что общая формула квадрата суммы, без промежуточных преобразований, будет выглядеть так:

(a + b)2 = a2 + 2ab + b2

Многочлен a2 + 2ab + b2 называется разложением квадрата суммы.

Так как a и b обозначают любые числа или выражения, то правило даёт нам возможность сокращённым путём возводить в квадрат любое выражение, которое может быть рассмотрено как сумма двух слагаемых.

Пример. Возвести в квадрат выражение 3x2 + 2xy.

Решение: чтобы не производить дополнительных преобразований, воспользуемся формулой квадрата суммы.

Известно что a^2+b^2+c^2=21 и a+b-c=7. найдите значение выражения ab-bc-ac

У нас должна получиться сумма квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа:

(3x2 + 2xy)2 = (3x2)2 + 2(3x2 · 2xy) + (2xy)2

Теперь, пользуясь правилами умножения и возведения в степень одночленов, упростим получившееся выражение:

(3x2)2 + 2(3x2 · 2xy) + (2xy)2 = 9x4 + 12x3y + 4x2y2

Квадрат разности

Выражение (ab)2 — это квадрат разности чисел a и b. Выражение (a — b)2 представляет собой произведение двух многочленов (ab)(ab). Следовательно, из квадрата разности мы можем сделать выводы, что

(ab)2 = (ab)(ab) = a2abab + b2 = a2 — 2ab + b2,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус удвоенное произведение первого числа на второе, плюс квадрат второго числа.

Из правила следует, что общая формула квадрата разности, без промежуточных преобразований, будет выглядеть так:

(ab)2 = a2 — 2ab + b2

Многочлен a2 — 2ab + b2 называется разложением квадрата разности.

Это правило применяется к сокращённому возведению в квадрат выражений, которые могут быть представлены как разность двух чисел.

Пример. Представьте квадрат разности в виде трёхчлена:

(2a2 — 5ab2)2

Решение: используя формулу квадрата разности находим:

(2a2 — 5ab2)2 = (2a2)2 — 2(2a2 · 5ab2) + (5ab2)2

Теперь преобразуем выражение в многочлен стандартного вида:

(2a2)2 — 2(2a2 · 5ab2) + (5ab2)2 = 4a4 — 20a3b2 + 25a2b4

Разность квадратов

Выражение a2b2 — это разность квадратов чисел a и b.

Выражение a2b2 представляет собой сокращённый способ умножения суммы двух чисел на их разность:

(a + b)(ab) = a2 + ababb2 = a2b2,

т. е. произведение суммы двух чисел на их разность равно разности квадратов этих чисел.

Из правила следует, что общая формула разности квадратов выглядит так:

a2b2 = (a + b)(ab)

Это правило применяется к сокращённому умножению таких выражений, которые могут быть представлены: одно — как сумма двух чисел, а другое — как разность тех же чисел.

Пример. Преобразуйте произведение в двучлен:

(5a2 + 3)(5a2 — 3)

Решение:

(5a2 + 3)(5a2 — 3) = (5a2)2 — 32 = 25a4 — 9

В примере мы применили формулу разности квадратов справа налево, то есть нам дана была правая часть формулы, а мы преобразовали её в левую:

(a + b)(ab) = a2b2

На практике все три рассмотренные формулы применяются и слева направо и справа налево, в зависимости от ситуации.

Выражения, преобразование выражений

Формулы сокращенного умножения (ФСУ): таблица, формулировки, примеры применения.


Для умножения и возведения в степень чисел и выражений (в частности многочленов) в некоторых случаях могут быть использованы так называемые формулы сокращенного умножения. Из названия понятно, что эти формулы позволяют проводить умножение сокращенно, то есть, быстрее при более компактной записи решения.

В этой статье мы перечислим все основные наиболее часто используемые формулы сокращенного умножения. Для удобства запоминания занесем их в таблицу. Дальше дадим формулировки – они позволят читать формулы сокращенного умножения. После этого остановимся на принципах доказательства этих формул. Наконец, дадим обзор задач, для решения которых применяются формулы сокращенного умножения, и рассмотрим несколько примеров с подробными решениями.


Список формул сокращенного умножения (ФСУ) в виде таблицы

Формулы сокращенного умножения (фсу) изучаются на уроках алгебры в 7 классе после разговора про действия с многочленами и одночленами, при этом рассматриваются 7 основных формул. Перечислим их по порядку в виде списка:

  • (a+b)2=a2+2·a·b+b2 – так называемая формула квадрата суммы;
  • (a−b)2=a2−2·a·b+b2 – эта формула имеет название квадрат разности;
  • (a+b)3=a3+3·a2·b+3·a·b2+b3 – эта формула представляет собой куб суммы;
  • (a−b)3=a3−3·a2·b+3·a·b2−b3формула куба разности;
  • (a−b)·(a+b)=a2−b2;
  • (a+b)·(a^2−a·b+b^2)=a^3+b^3;
  • (a−b)·(a2+a·b+b2)=a3−b3.

Под буквами a и b понимаются числа, переменные, или, вообще, любые числовые и буквенные выражения.

Формулы сокращенного выражения очень часто применяются на практике, так что их все желательно выучить наизусть. До этого момента нам будет служить верой и правдой таблица формул сокращенного умножения, которую мы рекомендуем распечатать и все время держать перед глазами:

Первые четыре формулы из составленной таблицы формул сокращенного умножения позволяют возводить в квадрат и куб сумму или разность двух выражений. Пятая предназначена для краткого умножения разности и суммы двух выражений. А шестая и седьмая формулы используются для умножения суммы двух выражений a и b на их неполный квадрат разности (так называют выражение вида a2−a·b+b2) и разности двух выражений a и b на неполный квадрат их суммы (a2+a·b+b2) соответственно.

Стоит отдельно заметить, что каждое равенство в таблице представляет собой тождество. Этим объясняется, почему формулы сокращенного умножения еще называют тождествами сокращенного умножения.

При решении примеров, особенно в которых имеет место разложение многочлена на множители, ФСУ часто используют в виде с переставленными местами левыми и правыми частями:

Три последних тождества в таблице имеют свои названия.

Формула a2−b2=(a−b)·(a+b) называется формулой разности квадратов, a3+b3=(a+b)·(a2−a·b+b2) — формулой суммы кубов, а a3−b3=(a−b)·(a2+a·b+b2) — формулой разности кубов. Обратите внимание, что соответствующим формулам с переставленными частями из предыдущей таблицы фсу мы никак не назвали.

К началу страницы

Дополнительные формулы


В таблицу формул сокращенного умножения не помешает добавить еще несколько тождеств.

Во-первых, полезной будет формула бинома Ньютона вида , где — биномиальные коэффициенты, стоящие в строке под номером n в треугольнике Паскаля. С ее помощью можно сокращенно возводить сумму двух выражений в любую натуральную степень. Кстати, ФСУ квадрата и куба суммы и разности являются частными случаями формулы бинома Ньютона при n=2 и n=3.

Во-вторых, полезной бывает формула возведения в квадрат суммы трех, четырех и большего количества слагаемых вида
(a1+a2+…+an)2=a12+a22+…+an−12+an2+
+2·a1·a2+2·a1·a3+2·a1·a4+…+
+2·a1·an−1+2·a1·an+
+2·a2·a3+2·a2·a4+…+2·a2·an−1+2·a2·an+
+…+
+2·an−1·an.

Она читается так: квадрат суммы n слагаемых равен сумме квадратов всех этих слагаемых и удвоенных произведений всех возможных пар этих слагаемых. Для примера возведем в квадрат с использованием этой формулы сумму трех слагаемых a, b и c, имеем (a+b+c)2=a2+b2+c2+2·a·b+2·a·c+2·b·c. В частном случае при n=2 эта формула становится уже известной нам формулой квадрата суммы двух слагаемых.

И еще не помешает держать перед глазами формулу разности n-ых степеней двух слагаемых вида an−bn=
=(a−b)·(an−1+an−2·b+an−3·b2+…+a·bn−2+bn−1), которую обычно представляют раздельно для четных и нечетных показателей. Для четных показателей 2·m она имеет вид a2·m−b2·m=
=(a2−b2)·(a2·m−2+a2·m−4·b2+a2·m−6·b4+…+b2·m−2), а для нечетных показателей 2·m+1 – вид a2·m+1−b2·m+1=
=(a−b)·(a2·m+a2·m−1·b+a2·m−2·b2+…+b2·m).

Частными случаями этой формулы являются формулы разность квадратов (при n=2), разность кубов (при n=3) и сумма кубов (при n=3 и если b заменить на −b).

К началу страницы

Как читаются формулы сокращенного умножения?

Чтобы рассказать решение примера, в котором были использованы формулы сокращенного умножения, нужно знать, как эти формулы читаются. Дадим соответствующие формулировки.

Сначала разберемся с принципом чтения формул сокращенного умножения. Это удобнее всего сделать, рассмотрев любую и них, например, первую формулу квадрата суммы вида (a+b)2=a2+2·a·b+b2.

В левой ее части находится выражение (a+b)2, которое представляет собой квадрат суммы двух выражений a и b, оно так и читается (отсюда понятно и название формулы). Дальше стоит знак равно, он и произносится как равно. В правой части формулы расположена сумма трех слагаемых a2, 2·a·b и b2. a2 и b2 – это квадраты первого и второго выражений соответственно, а 2·a·b читается как удвоенное произведение выражений a и b, слово «удвоенное» отвечает числовому коэффициенту2. Осталось соединить все эти рассуждения в одно предложение, которое будет ответом на вопрос, как читается формула квадрата суммы.

Итак, квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения первого и второго выражений и квадрата второго выражения.

Аналогично читаются и остальные фсу.

Так квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение этих выражений плюс квадрат второго выражения. Эта формулировка второй фсу вида (a−b)2=a2−2·a·b+b2.

Дальше читаем формулу (a+b)3=a3+3·a2·b+3·a·b2+b3. Куб суммы двух выражений a и b равен сумме куба первого выражения, утроенного произведения квадрата первого выражения на второе, утроенного произведения первого выражения на квадрат второго и куба второго выражения.

Аналогично читается и формула куба разности (a−b)3=a3−3·a2·b+3·a·b2−b3. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого на квадрат второго выражения минус куб второго выражения.

Переходим к чтению пятой по списку формулы сокращенного выражения (a−b)·(a+b)=a2−b2. Произведение разности двух выражений и их суммы равно разности квадратов первого и второго выражений.

А для удобства чтения шестой и, последней, седьмой ФСУ используют термины «неполный квадрат суммы» и «неполный квадрат разности» выражений a и b, которыми называют выражения a2+a·b+b2 и a2−a·b+b2 соответственно. (В свою очередь выражения a2+2·a·b+b2 и a2−2·a·b+b2 называют полным квадратом суммы и разности соответственно.)

Итак, произведение суммы двух выражений на их неполный квадрат разности равно сумме кубов этих выражений.

Теорема косинусов. Доказательство теоремы косинусов.

Так читается формула (a+b)·(a2−a·b+b2)=a3+b3. И произведение разности двух выражений на неполный квадрат их суммы равен разности кубов этих выражений, этому утверждению отвечает формула сокращенного умножения вида (a−b)·(a2+a·b+b2)=a3−b3.

К началу страницы

Доказательство

Сейчас самое время остановиться на доказательстве формул сокращенного умножения.

Доказать их достаточно легко – для этого нужно лишь выполнить возведение в степень или умножение выражений, находящихся в левых частях формул, основываясь на свойствах умножения.

Для примера докажем формулу квадрата разности (a−b)2=a2−2·a·b+b2. Возведем разность a−b во вторую степень. Для этого степень заменяем умножением, и выполняем это действие: (a−b)2=(a−b)·(a−b)=
=a·(a−b)−b·(a−b)=a·a+a·(−b)−b·a−b·(−b)=
=a2−a·b−b·a+b·b=a2−a·b−a·b+b2=
=a2−2·a·b+b2.

Абсолютно аналогично доказывается любая другая из 7 основных формул сокращенного умножения.

Доказательство дополнительных ФСУ можно провести с использованием метода наименьших квадратов.

К началу страницы

Сферы применения формул сокращенного умножения (фсу) и примеры

Основное предназначение формул сокращенного умножения (фсу) объясняется их названием, то есть, оно состоит в кратком умножении выражений. Однако сфера применения ФСУ намного шире, и не ограничивается кратким умножением. Перечислим основные направления.

Несомненно, центральное приложение формулы сокращенного умножения нашли в выполнении тождественных преобразований выражений. Наиболее часто эти формулы используются в процессе упрощения выражений.

Упростите выражение 9·y−(1+3·y)2.

В данном выражении возведение в квадрат можно выполнить сокращенно, имеем 9·y−(1+3·y)2=9·y−(12+2·1·3·y+(3·y)2). Остается лишь раскрыть скобки и привести подобные члены: 9·y−(12+2·1·3·y+(3·y)2)=9·y−1−6·y−9·y2=3·y−1−9·y2.

9·y−(1+3·y)2=3·y−1−9·y2.

И если в 7 классе речь идет о преобразовании целых выражений с помощью формул сокращенного умножения, то в старших классах можно будет видеть применение ФСУ к преобразованию выражений всех других видов – дробных, иррациональных, логарифмических, тригонометрических и других. К примеру, тождества сокращенного умножения с переставленными частями позволяют представлять выражения в виде степеней или произведений, в частности, выполнять разложение многочленов на множители. Это очень полезно, к примеру, при сокращении алгебраических дробей.

Сократите дробь .

В числителе выражение представляет собой разность кубов двух выражений 2·x и z2, а в знаменателе – разность квадратов этих выражений. После применения соответствующих формул исходная дробь примет вид . Теперь можно сократить одинаковые множители в числителе и знаменателе: .

Оформим все решение кратко:

.

Формулы сокращенного умножения иногда позволяют рационально вычислять значения выражений. В качестве примера покажем, как можно возвести число 79 в квадрат с помощью формулы квадрата разности: 792=(80−1)2=802−2·80·1+12=6 400−160+1=6 241. Такой подход позволяет выполнять подобные вычисления даже устно.

В заключение скажем еще про одно важное преобразование – выделение квадрата двучлена, в основе которого лежит формула сокращенного умножения квадрат суммы. Например, выражение 4·x2+4·x−3 может быть преобразовано к виду (2·x)2+2·2·x·1+12−4, и первые три слагаемых заменяются с использованием формулы квадратом суммы. Так что выражение принимает вид (2·x+1)2−4. Подобные преобразования широко используются, например, при интегрировании.

Профиль автора статьи в Google+

К началу страницы

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. — 17-е изд. — М. : Просвещение, 2008. — 240 с. : ил. — ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. — 13-е изд., испр. — М.: Мнемозина, 2009. — 160 с.: ил. ISBN 978-5-346-01198-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Формули скороченого множення застосовують для спрощення обчислень, а також розкладання многочленів на прості множники, швидкого множення многочленів. Більшість формул скороченого множення можна отримати з біному Ньютона, в цьому Ви скоро переконаєтеся.

Формули для квадратів застосовують в обчисленнях найчастіше. Їх починають вивчати в шкільній програми починаючи з 7 класу і до кінця навчання формули для квадратів та кубів школярі повинні знати на зубок.


Формули для кубів теж не надто складні і їх потрібно знати при зведенні многочленів до стандартного вигляду, для спрощення піднесення суми чи різниці змінної і числа до кубу.

Формули позначені червоним отримують з попередніх групуванням доданків.

Формули для четвертого степеня та п’ятого степеня в шкільному курсі мало кому пригодяться, однак є завдання при вивченні вищої математики де потрібно обчислювати коефіцієнти при степенях.

Формули для степеня n степеня розписані через біноміальні коефіцієнти з використанням факторіалів наведені нижче

Приклади застосування формул скороченого множення

Приклад 1.Обчислити 512.

Розв’язок.

Якщо маєте калькулятор то без проблем знаходите

Це я пожартував — з калькулятором мудрі усі, без нього … (не будемо про сумне).
Не маючи калькулятора та знаючи наведені вище правила квадрат числа знаходимо за правилом

Саме для таких спрощених обчислень і потрібні формули скороченого множенння.

Приклад 2.Знайти 992.

Розв’язок. Застосуємо формулу для різниці в квадраті

Як можна переконатися з обчислень — це легше, ніж часом знайти в потрібний момент калькулятор.

Приклад 3.Піднести до квадрату вираз
(x+y-3).

Розв’язок. Суму перших двох доданків уявно вважаємо одним доданком і за другою формулою скороченого множення знаходимо

В такий спосіб отримали вадратичну залежність для двох змінних.

Приклад 4.Знайти різницю квадратів
112-92.

Розв’язок. Оскільки числа невеликі то можна просто підставити значення квадратів

Але мета в нас зовсім інша – навчитися використовувати формули скороченого множення для спрощення обчислень. Для цього прикладу застосуємо третю формулу

При великих числах і невеликою різницею між ними така схема набагато ефективніша ніж підносити до квадратів, а пізніше шукати різницю квадратів.

Приклад 5.Знайти різницю квадратів
172-32.

Розв’язок. На цьому прикладі Ви вже захочете вивчити правила, щоб обчислення звести до одного рядка

Як бачите – нічого складного ми не робили. Кінцевий результат в складніших умовах отримують множенням чисел у стовпчик.

Приклад 6. Спростити вираз
(x-y)2-(x+y)2.

Розв’язок. Можна розкладати квадрати, а пізніше сумувати подібні доданки. Проте можна прямо застосувати різницю квадратів

Тут пропущені проміжні перетворенн, які займають чимало місця, але наша практика дозволяє на так записати. Для перевіри нас розпишіть добуток дужок самостійно.

Приклад 7.Піднести до кубу многочлен
x3-4.

Розв’язок.

Формула Пифагора a2+b2=c2. Почему квадрат?

Застосуємо 5 формулу скороченого множення

З кубами Вам доведеться часто мати справу в навчанні, тому раджу формуи вивчити або мати на шпаргалці.

Приклад 8. Записати у вигляді різниці квадратів або сумі
а) x2-8x+7
б) x2+4x+29

Розв’язок. а) Перегрупуємо доданки

б) Спрощуємо на основі попередніх міркувань

Такі переторення досить часто доводиться виконувати на інтегруванні, коли наведені квадратичні залежності містяться в чисельнику чи знаменнику і потрібно звести запис під формулу інтегрування.

Приклад 9.Розкласти раціональний дріб

Розв’язок.

Застосуємо формулу різниці квадратів

Складемо систему рівнянь для визначення констант


До потроєного першого рівняння додамо друге. Знайдене значення підставляємо в перше рівняння


Остаточно розклад прийме вигляд

Розкласти раціональний дріб часто необхідно перед інтегруванням, щоб понизити степінь знаменника.

Приклад 10.Використовуючи біном Ньютона розписати
вираз (x-a)7.

Розв’язок. Що таке біном Ньютона Ви мабуть вже знаєте. Якщо ні то нижче наведені біноміальні коефіцієнти

Вони утворюються наступним чином: по краю ідуть одиниці, коефіцієнти між ними в нижньому рядку утворюють сумуванням сусідніх верхніх. Якщо нам потрібно знайти різницю в якомусь степені, то знаки в розкладі чергуються від плюса до мінуса. Таким чином для сьомого порядку отримаємо такий розклад

Уважно також погляньте як змінюються показники – для першої змінної вони спадають на одиницю в кожному наступному доданку, відповідно для другої – на одиницю зростають. В сумі показники при ожному множгику завжди повинні давати степінь розкладу (=7). Використовуйте це правило для самоперевірки.
Думаю на основі приведеного вище матеріалу Ви зможете розв’язати задачі на біном Ньютона. Вивчайте формули скороченого множення та застосовуйте всюди, де це може спростити обчислення та зекономити час виконання завдання.

Квадрат суммы нескольких слагаемых

Рассмотрим на примерах применение формул сокращенного умножения.

Пример 1 Преобразуйте выражение в многочлен

Разложим выражение на множители с помощью формулы квадрата суммы

Пример 2 Преобразуйте выражение в многочлен

Воспользуемся формулой квадрата разности

Пример 3 Выполните умножение

Разложим выражение на множители с помощью формулы разности квадратов

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук.

Pythagorean theorem

Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей, решении интегралов и многом другом. А значит  будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

 

И так вот они:

 

Первая  х2 — у2 = (х — у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить  разности этих выражений на их суммы.

Вторая (х + у)2 = х2 + 2ху + у2.  Чтобы найти квадрат суммы двух выражений  нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х — у)2 = х2 – 2ху + у2. Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у)3 = х3 + 3х2у + 3ху2 + у3.   Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая  (х — у)3 = х3 – 3х2у + 3ху2 — у3.  Чтобы рассчитать куб разности двух выражений необходимо от  куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая  х3 + у3 = (х + у) (х2 — ху + у2)  Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х3 — у3 = (х — у) (х2 + ху + у2)  Чтобы произвести вычисление  разности кубов двух выражений  надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

 О существовании этих закономерностей знали еще около 4 тысяч лет тому назад.

Их широко применяли  жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы   (а + b)2 = a2 +2ab +b2.

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как  буквами для обозначения чисел не пользовались и учёные  древней Эллады. Ими повсеместно употреблялись не “а2”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник, заключенный между отрезками a и b”.

 

 И так Евклид взял квадрат со стороной (a + b):

 

 

  S = (a + b)2 – площадь квадрата;

 

 

С другой стороны, этот же квадрат он представить иначе, разделив сторону на а и b:

Тогда площадь квадрата можно представить в виде суммы площадей:

 

 

 И так как квадраты были одинаковы, то их площади равны,  и это значит:

 

 

Таким образом, была доказана геометрически формула квадрата суммы.

 

    

Добавить комментарий