Функции цитоплазматической мембраны

.

ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

 

Цитоплазматическая мембрана или плазмалемма (лат. membrana – кожица, плёнка) – тончайшая пленка (7–10нм), отграничивающая внутреннее содержимое клетки от окружающей среды, видна только в электронный микроскоп.

По химической организации плазмалемма представляет липопротеидный комплекс – молекулы липидов и белков.

Её основу составляет липидный бислой, состоящий из фосфолипидов, кроме этого, в мембранах присутствуют гликолипиды и холестерол. Все они обладают свойством амфипатричности, т.е. у них есть гидрофильные («любящие воду») и гидрофобные («боящиеся воды») концы. Гидрофильные полярные «головки» липидных молекул (фосфатная группа) обращены кнаружи мембраны, а гидрофобные неполярные «хвосты» (остатки жирных кислот) – друг к другу, что создает биполярный липидный слой. Молекулы липидов подвижны и могут перемещаться в своем монослое или редко – из одного монослоя в другой. Монослои липидов обладают ассиметричностью, т. е. отличаются по составу липидов, что придает специфичность мембранам даже в пределах одной клетки. Бислой липидов может находиться в состоянии жидкого или твердого кристалла.

Вторым обязательным компонентом плазмалеммы являются белки. Многие мембранные белки способны перемещаться в плоскости мембраны или вращаться вокруг своей оси, но не могут переходить с одной стороны бислоя липидов на другой.

Липиды обеспечивают основные структурные особенности мембраны, а белки – её функции.

Функции мембранных белков различны: поддержание структуры мембран, получение и преобразование сигналов из окружающей среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах.

Различают несколько моделей строения цитоплазматической мембраны.

①. БУТЕРБРОДНАЯ МОДЕЛЬ(белки липиды белки)

В 1935г. английские ученые Даниэли и Даусон высказали идею о послойном расположении в мембранемолекул белков (темные слои в электронном микроскопе), которые залегают снаружи, и молекул липидов (светлый слой) – внутри. Длительное время существовало представление о едином трехслойном строении всех биологических мембран.

При детальном изучении мембраны с помощью электронного микроскопа оказалось, что светлый слой на самом деле представлен двумя слоями фосфолипидов – это билипидный слой, причем водорастворимые его участки – гидрофильные головки направлены к белковому слою, а нерастворимые (остатки жирных кислот) – гидрофобные хвосты обращены друг к другу.

 
 

 

Однако уже с середины 60-х годов начали накапливаться факты против унитарной «бутербродной» модели.

Клеточная мембрана

В частности, по одним данным, не все мембраны имели четкую трехслойную структуру при электронно-микроскопическом исследовании; по другим – значительная часть мембранных белков имела глобулярную структуру, а не ламеллярную, как в постулируемой модели. Наконец, среди многочисленных моделей мембран, предложенных в середине 60-х годов, начали выделяться те, в которых доказывалось наличие гидрофобно-гидрофильных взаимодействий не только между липидными молекулами, но и между липидами и белками.

 

②. ЖИДКОСТНО-МОЗАИЧНАЯ МОДЕЛЬ

В 1972г.Сингер и Николсонописали модель мембраны, которая получила широкое признание. Согласно этой модели молекулы белков не образуют сплошного слоя, а погружены в биполярный липидный слой на разную глубину в виде мозаики. Глобулы белковых молекул, подобно айсбергам, погружены в «океан»

 

липидов: одни находятся на поверхности билипидного слоя – периферические белки, другие погружаются в него наполовину – полуинтегральные белки, третьи – интегральные белки – пронизывают его насквозь, формируя гидрофильные поры. Периферические белки, находясь на поверхности билипидного слоя, связаны с головками липидных молекул электростатическими взаимодействиями. Но они никогда не образуют сплошного слоя и, по сути дела, не являются белками собственно мембраны, а, скорее, связывают ее с надмембранной или субмембранной системой поверхностного аппарата клетки.

Основную роль в организации собственно мембраны играют интегральные и полуинтегральные (трансмембранные) белки, имеющие глобулярную структуру и связанные с липидной фазой гидрофильно-гидрофобными взаимодействиями. Молекулы белков, как и липиды, обладают амфипатричностью и своими гидрофобными участками взаимодействуют с гидрофобными хвостами билипидного слоя, а гидрофильные участки обращены к водной среде и образуют с водой водородные связи.

③. БЕЛКОВО-КРИСТАЛЛИЧЕСКАЯ МОДЕЛЬ(модель липопротеинового коврика)

Мембраны образованы переплетением липидных и белковых молекул, объединяющихся между собой на основе гидрофильно-

гидрофобных взаимодействий.

       
   
 
 

 

Белковые молекулы, как штифты, пронизывают слой липидов и выполняют в составе мембраны функцию каркаса. После обработки мембраны жирорастворимыми веществами белковый каркас сохраняется, что доказывает взаимосвязь между молекулами белков в мембране. По-видимому, эта модель реализуется лишь в отдельных специальных участках некоторых мембран, где требуется жесткая структура и тесные стабильные взаимоотношения между липидами и белками (например, в области расположения фермента Na-К –АТФ-азы).

Самой универсальной моделью, отвечающей термодинамическим принципам (принципам гидрофильно-гидрофобных взаимодействий), морфо-биохимическим и экспериментально-цитологическим данным, является жидкостно-мозаичная модель. Однако все три модели мембран не исключают друг друга и могут встречаться в разных участках одной и той же мембраны в зависимости от функциональных особенностей данного участка.

СВОЙСТВА МЕМБРАНЫ

1. Способность к самосборке. После разрушающих воздействий мембрана способна восстановить свою структуру, т.к. молекулы липидов на основе своих физико-химических свойств собираются в биполярный слой, в который затем встраиваются молекулы белков.

2. Текучесть. Мембрана не является жесткой структурой, большая часть входящих в её состав белков и липидов может перемещаться в плоскости мембраны, они постоянно флюктуируют за счет вращательных и колебательных движений. Это определяет большую скорость протекания химических реакций на мембране.

3. Полупроницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определённые молекулы и ионы растворённых веществ. Это обеспечивает поддержание ионного и молекулярного состава клетки.

4. Мембрана не имеет свободных концов. Она всегда замыкается в пузырьки.

5. Асимметричность. Состав наружного и внутреннего слоев как белков, так и липидов различен.

6. Полярность. Внешняя сторона мембраны несёт положительный заряд, а внутренняя – отрицательный.

 

ФУНКЦИИ МЕМБРАНЫ

1) Барьерная –плазмалемма отграничивает цитоплазму и ядро от внешней среды. Кроме того, мембрана делит внутреннее содержимое клетки на отсеки (компартменты), в которых зачастую протекают противоположные биохимические реакции.

2) Рецепторная(сигнальная) – благодаря важному свойству белковых молекул – денатурации, мембрана способна улавливать различные изменения в окружающей среде. Так, при воздействии на мембрану клетки различных средовых факторов (физических, химических, биологических) белки, входящие в ее состав, меняют свою пространственную конфигурацию, что служит своеобразным сигналом для клетки.

Это обеспечивает связь с внешней средой, распознавание клеток и их ориентацию при формировании тканей и т.д. С этой функцией связана деятельность различных регуляторных систем и формирование иммунного ответа.

3) Обменная – в состав мембраны входят не только структурные белки, которые образуют ее, но и ферментативные, являющиеся биологическими катализаторами. Они располагаются на мембране в виде «каталитического конвейера» и определяют интенсивность и направленность реакций метаболизма.

4) Транспортная – молекулы веществ, диаметр которых не превышает 50 нм, могут проникать путем пассивного и активного транспорта через поры в структуре мембраны. Крупные вещества попадают в клетку путем эндоцитоза (транспорт в мембранной упаковке), требующего затраты энергии. Его разновидностями являются фаго- и пиноцитоз.

Пассивный транспорт – вид транспорта, в котором перенос веществ осуществляется по градиенту химической или электрохимической концентрации без затраты энергии АТФ. Выделяют два вида пассивного транспорта: простая и облегченная диффузия. Диффузия – это перенос ионов или молекул из зоны более высокой их концентрации в зону более низкой концентрации, т.е. по градиенту.

Простая диффузия – ионы солей и вода проникают через трансмембранные белки или жирорастворимые вещества по градиенту концентрации.

Облегченная диффузия – специфические белки-переносчики связывают вещество и переносят его через мембрану по принципу «пинг-понга». Таким способом через мембрану проходят сахара и аминокислоты. Скорость такого транспорта значительно выше, чем простой диффузии. Кроме белков- переносчиков, в облегченной диффузии принимают участие некоторые антибиотики – например, грамитидин и ваномицин.

Поскольку они обеспечивают транспорт ионов, их называют ионофорами.

Активный транспорт – это вид транспорта, при котором расходуется энергия АТФ, он идёт против градиента концентрации. В нем принимают участие ферменты АТФ-азы. В наружной клеточной мембране находятся АТФ-азы, которые осуществляют перенос ионов против градиента концентрации, это явление называется ионным насосом. Примером является натрий-калиевый насос. В норме в клетке больше ионов калия, во внешней среде – ионов натрия. Поэтому по законам простой диффузии калий стремится из клетки, а натрий – в клетку. В противовес этому натрий-калиевый насос накачивает против градиента концентрации в клетку ионы калия, а ионы натрия выносит во внешнюю среду. Это позволяет поддерживать постоянство ионного состава в клетке и её жизнеспособность. В животной клетке одна треть АТФ расходуется на работу натрий-калиевого насоса.

Разновидностью активного транспорта является транспорт в мембранной упаковке – эндоцитоз. Крупные молекулы биополимеров не могут проникать через мембрану, они поступают в клетку в мембранной упаковке. Различают фагоцитоз и пиноцитоз. Фагоцитоз – захват клеткой твердых частиц, пиноцитоз – жидких частиц. В этих процессах выделяют стадии:

1) узнавание рецепторами мембраны вещества; 2) впячивание (инвагинация) мембраны с образованием везикулы (пузырька); 3) отрыв пузырька от мембраны, слияние его с первичной лизосомой и восстановление целостности мембраны; 4) выделение непереваренного материала из клетки (экзоцитоз).

Эндоцитоз является способом питания для простейших. У млекопитающих и человека имеется ретикуло-гистио-эндотелиальная система клеток, способная к эндоцитозу – это лейкоциты, макрофаги, клетки Купфера в печени.

 

 

ОСМОТИЧЕСКИЕ СВОЙСТВА КЛЕТКИ

Осмос – односторонний процесс проникновения воды через полупроницаемую мембрану из области с меньшей концентрацией раствора в область с более высокой концентрацией. Осмос обусловливает осмотическое давление.

Диализ – односторонняя диффузия растворенных веществ.

Раствор, в котором осмотическое давление такое же, как и в клетках, называют изотоническим. При погружении клетки в изотонический раствор её объем не изменяется. Изотонический раствор называют физиологическим – это 0,9% раствор хлорида натрия, который широко применяется в медицине при сильном обезвоживании и потери плазмы крови.

Раствор, осмотическое давление которого выше, чем в клетках, называют гипертоническим.

Клетки в гипертоническом растворе теряют воду и сморщиваются. Гипертонические растворы широко применяются в медицине. Марлевая повязка, смоченная в гипертоническом растворе, хорошо впитывает гной.

Раствор, где концентрация солей ниже, чем в клетке, называют гипотоническим. При погружении клетки в такой раствор вода устремляется в нее. Клетка набухает, ее тургор увеличивается, и она может разрушиться. Гемолиз – разрушение клеток крови в гипотоническом растворе.

Осмотическое давление в организме человека в целом регулируется системой органов выделения.

 

 

Предыдущая123456789Следующая


Дата добавления: 2016-02-16; просмотров: 1346;


ПОСМОТРЕТЬ ЕЩЕ:

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану.

3. Функции и строение цитоплазматической мембраны

Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Строение и функции цитоплазматической мембраны

Клеточная теория

В 1665 г. Р. Гук, рассматривая под микроскопом срез пробки дерева, обнаружил пустые ячейки, которые он назвал «клетками». Он видел только оболочки растительных клеток, и длительное время оболочка считалась основным структурным компонентом клетки. В 1825 г. Я. Пуркине описал протоплазму клеток, а в 1831 г. Р. Броун — ядро. В 1837 г. М. Шлейден пришёл к заключению, что растительные организмы состоят из клеток, и каждая клетка содержит ядро.

1.1. Используя накопившиеся к этому времени данные, Т.

Цитоплазматическая мембрана, ее функции и строение

Шванн в 1839 г. сформулировал основные положения клеточной теории:

1) клетка является основной структурной единицей растений и животных;

2) процесс образования клеток обусловливает рост, развитие и дифференцировку организмов.

В 1858 г. Р. Вирхов — основоположник патологической анатомии — дополнил клеточную теорию важным положением, что клетка может происходить только от клетки (Omnis cellula e cellula) в результате её деления. Он установил, что в основе всех заболеваний лежат изменения структуры и функции клеток.

1.2. Современная клеточная теория включает следующие положения:

1) клетка — основная структурно-функциональная и генетическая единица живых организмов, наименьшая единица живого;

2) клетки всех одноклеточных и многоклеточных организмов сходны по строению, химическому составу и важнейшим проявлениям процессов жизнедеятельности;

3) каждая новая клетка образуется в результате деления исходной (материнской) клетки;

4) клетки многоклеточных организмов специализированы: они выполняют разные функции и образуют ткани;

5) клетка является открытой системой через которую проходят и преобразуются потоки вещества, энергии и информации

Строение и функции цитоплазматической мембраны

Клетка представляет собой открытую саморегулирующуюся систему, через которую постоянно идёт поток вещества, энергии и информации. Эти потоки принимает специальный аппарат клетки, в который входят:

1) надмембранный компонент – гликокаликс;

2) элементарная биологическая мембрана или их комплекс;

3) подмембранный опорно-сократительный комплекс гиалоплазмы;

4) анаболическая и катаболическая системы.

Основной компонент этого аппарата — элементарная мембрана.

Клетка содержит различные типы мембран, но принцип их строения одина-

В 1972 году С. Сингером и Г. Николсоном была предложена жидкостно-мозаичная модель строения элементарной мембраны. Согласно этой модели ее основу также составляет билипидный слой, но белки по отношению к этому слою располагаются по-разному. Часть белковых молекул лежит на поверхности липидных слоев (периферические белки), часть пронизывает один слой липидов (полуинтегральные белки), а часть пронизывает оба слоя липидов (интегральные белки). Липидный слой находится в жидкой фазе («липидное море»). На наружной поверхности мембран имеется рецепторный аппарат — гликокаликс, образованный разветвлёнными молекулами гликопротеинов, «узнающий» определённые вещества и структуры.

2.3. Свойства мембран: 1) пластичность, 2) полупроницаемость, 3) способность самозамыкаться.

2.4. Функции мембран: 1) структурная — мембрана как структурный компонент входит в состав большинства органоидов (мембранный принцип структуры органоидов); 2) барьерная и регуляторная — поддерживает постоянство химического состава и регулирует все обменные процессы (реакции обмена веществ протекают на мембранах); 3) защитная; 4) рецепторная.


Дата добавления: 2016-09-06; просмотров: 542;


Похожие статьи:

Основу плазмалеммы, как и других мембран в клетках (например, митохондрий, пластид и т. д.), составляет слой липидов, имеющий два ряда молекул (рис. 1). Поскольку молекулы липидов полярны (один полюс у них гидрофилен, т. е. притягивается водой, а другой гидрофобен, т. е. отталкивается от воды), то и располагаются они в определенном порядке. Гидрофильные концы молекул одного слоя направлены в сторону водной среды — в цитоплазму клетки, а другого слоя — наружу от клетки — в сторону межклеточного вещества (у многоклеточных) или водной среды (у одноклеточных).

Рис. 1.Строение клеточной мембраны согласно жидкостно-мозаичной модели. Белки и гликопротеины погружены в двойной слой липидных молекул, обращенных своими гидрофильными концами (кружки) наружу, а гидрофобными (волнистые линии) — в глубь мембраны

Выделяют периферические белки (они расположены только по внутренней или наружной поверхности мембраны), интегральные (они прочно встроены в мембрану, погружены в нее, способны менять свое положение в зависимости от состояния клетки). Функции мембранных белков: рецепторная, структурная (поддерживают форму клетки), ферментативная, адгезивная, антигенная, транспортная.

Схема строения элементарной мембраны жидкостно-мозаичная: жиры составляют жидкокристаллический каркас, а белки мозаично встроены в него и могут менять свое положение.

Молекулы белков мозаично встроены в бимолекулярный слой липидов. С внешней стороны животной клетки к липидам и молекулам белков плазмалеммы присоединяются молекулы полисахаридов, образуя гликолипиды и гликопротеины.

Эта совокупность формирует слой гликокаликса. С ним связана рецепторная функция плазмалеммы (см. ниже); также в нем могут накапливаться различные вещества, используемые клеткой.

Цитоплазматическая мембрана: функции, строение. Наружная цитоплазматическая мембрана

Кроме того, гликокаликс усиливает механическую устойчивость плазмалеммы.

В клетках растений и грибов есть еще клеточная стенка, играющая опорную и защитную роль. У растений она состоит из целлюлозы, а у грибов — из хитина.

Схема строения элементарной мембраны жидкостно-мозаичная: жиры составляют жидкокристаллический каркас, а белки мозаично встроены в него и могут менять свое положение.

Важнейшая функция мембраны: способствует компартментации — подразделению содержимого клетки на отдельные ячейки, отличающиеся деталями химического или ферментного состава. Этим достигается высокая упорядоченность внутреннего содержимого любой эукариотической клетки. Компартментация способствует пространственному разделению процессов, протекающих в клетке. Отдельный компартмент (ячейка) представлен какой-либо мембранной органеллой (например, лизосомой) или ее частью (кристами, отграниченными внутренней мембраной митохондрий).

Другие функции:

1)барьерная (отграничение внутреннего содержимого клетки);

2)структурная (придание определенной формы клеткам в соответствии с выполняемыми функциями);

3)защитная (за счет избирательной проницаемости, рецепции и антигенности мембраны);

4)регуляторная (регуляция избирательной проницаемости для различных веществ (пассивный транспорт без затраты энергии по законам диффузии или осмоса и активный транспорт с затратой энергии путем пиноцитоза, эндо- и экзоцито-за, работы натрий-калиевого насоса, фагоцитоза)). Путем фагоцитоза поглощаются целые клетки или крупные частицы (например, вспомните питание у амеб или фагоцитоз защитными клетками крови бактерий). При пиноцитозе происходит поглощение мелких частиц или капелек жидкого вещества. Общим для обоих процессов является то, что поглощаемые вещества окружаются впячивающейся наружной мембраной с образованием вакуоли, которая затем перемещается в глубь цитоплазмы клетки. Экзоцитоз представляет собой процесс (будучи также активным транспортом), противоположный по направлению фагоцитозу и пиноцитозу (рис.13). С его помощью могут выводиться непереваренные остатки пищи у простейших либо образованные в секреторной клетке биологически активные вещества.

5)адгезивная функция (все клетки связаны между собой посредством специфических контактов (плотных и неплотных));

6)рецепторная (за счет работы периферических белков мембраны). Существуют неспецифические рецепторы, которые воспринимают несколько раздражителей (например, холодовые и тепловые терморецепторы), и специфические, которые воспринимают только один раздражитель (рецепторы световоспринимающей системы глаза);

7)электрогенная (изменение электрического потенциала поверхности клетки за счет перераспределения ионов калия и натрия (мембранный потенциал нервных клеток составляет 90 мВ));

8)антигенная: связана с гликопротеинами и полисахаридами мембраны. На поверхности каждой клетки имеются белковые молекулы, которые специфичны только для данного вида клеток. С их помощью иммунная системы способна различать свои и чужие клетки. Обмен веществ между клеткой и окружающей средой осуществляется разными способами — пассивными и активными.

Источник: Краснодембский Е. Г.»Общая биология: Пособие для старшеклассников и поступающих в вузы»

Н. С. Курбатова, Е. А. Козлова «Конспект лекций по общей биологии»

Биологические мембраны. Цитоплазматическая мембрана: строение, свойства, функции.

Для клеток характерен мембранный принцип строения.

Биологическая мембрана – тонкая пленка, белково-липидная структура, толщиной 7 — 10 нм, расположенная на поверхности клеток (клеточная мембрана), образующая стенки большинства органоидов и оболочку ядра.

В 1972 г. С. Сингером и Г. Николсом была предложена жидкостно-мозаичная модель строения клеточной мембраны.

Позднее она была практически подтверждена. При рассмотрении в электронном микроскопе можно увидеть три слоя. Средний, светлый, составляет основу мембраны — билипидный слой, образованный жидкими фосфолипидами («липидное море»). Молекулы мембранных липидов (фосфолипиды, гликолипиды, холестерол и др.) имеют гидрофильные головки и гидрофобные хвосты, поэтому упорядоченно ориентированы в бислое. Два темных слоя – это белки, располагающиеся относительно бислоя липидов по-разному: периферические (прилегающие)- большинство белков, находятся на обеих поверхностях липидного слоя; полуинтегральные (полупогруженные) – пронизывают только один слой липидов; интегральные (погруженные) – проходят через оба слоя. У белков имеются гидрофобные участки, взаимодействующие с липидами, и гидрофильные – на поверхности мембраны в контакте с водным содержимым клетки, или тканевой жидкостью.

Функции биологических мембран:

1) отграничивает содержимое клетки от внешней среды и содержимое органоидов, ядра от цитоплазмы;

2) обеспечивают транспорт веществ в клетку и из нее, в цитоплазму из органоидов и наоборот;

3) участвуют в получении и преобразовании сигналов из окружающей среды, узнавании веществ клеток и т.д.;

4) обеспечивают примембранные процессы;

5) участвуют в преобразовании энергии.

Цитоплазматическая мембрана (плазмалемма, клеточная мембрана, плазматическая мембрана) – биологическая мембрана, окружающая клетку; основная, универсальная для всех клеток составная часть поверхностного аппарата. Толщина ее около 10 нм. Имеет характерное для биологических мембран строение. В цитоплазматической мембране гидрофильные головки липидов обращены к наружной и внутренней сторонам мембраны, а гидрофробные хвосты – внутрь мембраны.

§ 12. Цитоплазматическая мембрана

Периферические белки связаны с полярными головками липидных молекул гидростатическими взаимодействиями. Они не образуют сплошного слоя. Периферические белки связывают плазмалемму с над- или субмембранными структурами поверхностного аппарата. Некоторые молекулы липидов и белков плазмалемма животных клеток имеют ковалентные связи с молекулами олиго- иполисахаридов, которые расположены на наружной поверхности мембраны. Сильно разветвленные молекулы образуют с липидами и белками гликолипиды и гликопротеиды соответственно. Сахаридный слой — гликокаликс(лат. гликис – сладкий и калюм – толстая кожа) покрывает всю поверхность клетки и представляет собой надмембранный комплекс животной клетки. Олигосахаридные и полисахаридные цепи (антенны) выполняют ряд функций: распознавания внешних сигналов; сцепления клеток, их правильной ориентации при образовании тканей; иммунного ответа, где гликопротеиды играют роль иммунного ответа.

 

Рис.

Строение плазмалеммы

 

Химический состав плазмолеммы: 55% — белки, 35-40% — липиды, 2-10% — углеводы.

Наружная клеточная мембрана образует подвижную поверхность клетки, которая может иметь выросты и выпячивания, совершает волнообразные колебательные движения, в ней постоянно перемещаются макромолекулы. Клеточная поверхность неоднородна: структура ее в разных участках неодинакова, неодинаковы и физиологические свойства этих участков. В плазмалемме локализованы некоторые ферменты (около 200), поэтому действие факторов внешней среды на клетку опосредуется ее цитоплазматической мембраной. Поверхность клетки обладает высокой прочностью и эластичностью, легко и быстро восстанавливается после небольших повреждений.

Строение плазматической мембраны определяет ее свойства:

— пластичность (текучесть), позволяет мембране менять свою форму и размеры;

— способность к самозамыканию, дает возможность мембране восстанавливать целостность при разрывах;

— избирательная проницаемость, обеспечивает прохождение различных веществ через мембрану с разной скоростью.

Основные функции цитоплазматической мембраны:

· определяет и поддерживает форму клетки (формообразовательная);

· отграничивает внутренне содержимое клетки (барьерная), играя роль механического барьера; собственно барьерную функцию обеспечивает билипидный слой, не давая содержимому растекаться и препятствуя проникновению в клетку чужеродных веществ;

· защищает клетку от механических воздействий (защитная);

· регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава (регуляторная);

· распознает внешние сигналы, «узнает» определенные вещества (например, гормоны) (рецепторная); некоторые белки плазмалеммы (рецепторы гормонов; рецепторы В-лимфоцитов; интегральные белки, выполняющие специфические ферментативные функции, осуществляющие процессы пристеночного пищеварения) способны узнавать определенные вещества и связываться с ними, таким образом рецепторные беки участвуют в отборе молекул, поступающих в клетку;

· в плазматическую мембрану встроены также сигнальные белки, способные в ответ на действие различных факторов окружающей среды изменять свою пространственную структуру (конформацию) и таким образом передавать сигналы внутрь клетки, т.е.

плазмалемма обеспечивает раздражимость клеток, осуществляя обмен информацией между клеткой и окружающей средой;

· участвует в формировании межклеточных контактов и различного рода, специфических выпячиваний цитоплазмы (микроворсинок, ресничек, жгутиков) (структурная);

· транспортная функция связана со свойством плазмалеммы обсепечивать перенос веществ.

 

Предыдущая12345678Следующая


Дата добавления: 2015-11-04; просмотров: 1615;


ПОСМОТРЕТЬ ЕЩЕ:

Добавить комментарий